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Abstract

In this study full-scale experiments of wave boundary layers under irreg-

ular coastal waves are conducted using an oscillatory water tunnel. The

flow conditions cover two rough bottoms, three types of wave shapes, i.e.

sinusoidal, skewed and asymmetric waves, and two types of irregular-wave

sequences. The instantaneous turbulent velocity fields are measured with a

2-dimensional Particle Image Velocimetry system. The measured turbulence

statistical values show that the residual turbulence at the end of wave cycle

can persist into the next wave cycle, until the next cycle’s self-produced tur-

bulence becomes sufficiently strong. Consequently, the Reynolds-averaged

flow at the beginning of a wave cycle can behave as if the flow “memorizes”

the previous wave cycle. However, this memory effect quickly vanishes, and

therefore does not have a significant influence on some key boundary layer

characteristics, e.g. bottom shear stress. For irregular wave boundary layers

with skewed and asymmetric free-stream velocities, the measured mean cur-

rent and the associated mean bottom shear stress confirm the existence of a

well-known boundary layer streaming due to the imbalance of turbulence be-

tween the two halves of a wave cycle, and the measurements of bottom shear

Preprint submitted to Coastal Engineering May 27, 2017



stress of individual waves closely resemble those for periodic-wave conditions.

These experimental results suggest that modeling irregular wave boundary

layers in a wave-by-wave manner is plausible.

Keywords: irregular waves, Turbulent wave boundary layer, Oscillatory

Water Tunnel, Bottom shear stress, Laboratory experiment

1. Introduction

In the coastal environment, shoaling waves interact with the underneath

seabed through a thin turbulent wave boundary layer (WBL), which plays

an important role in determining coastal sediment transport. If the wave

length is much longer than the excursion amplitude of the bottom wave

orbital motion, local WBLs can be approximated by oscillatory boundary

layer flows, which are uniform in the bottom-parallel direction, so prototype

flow conditions can be easily achieved in oscillatory water tunnels (OWT).

A number of early OWT studies, e.g. Jonsson and Carlsen (1976), Sleath

(1987) and Jensen et al. (1989), revealed some key characteristics of WBL

and provided valuable measurements for developing or validating predictive

models (e.g. Grant, 1977; Justesen, 1988), but they only considered sinusoidal

oscillatory flows, which will produce a zero net sediment transport rate over

a horizontal seabed.

Coastal waves become increasingly nonlinear as they approach the shore,

which leads to two nonlinear features differentiating the two half-periods of

the wave bottom orbital velocity, i.e. skewness (the velocity time series has

peaked crest and flat trough) and asymmetry (the velocity time series be-

comes forward-leaning). As a result, the intra-period variation of bottom
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shear stress exhibits similar features. A number of simple estimators have

been proposed to predict the bottom shear stress for skewed and/or asym-

metric periodic WBLs, e.g. Gonzalez-Rodriguez and Madsen (2007) and

Abreu et al. (2013). Generally speaking, positive skewness and asymmetry

lead to larger bottom shear stress under the crest half-cycle, so a net positive

(usually onshore) bedload transport rate should be expected, since bedload

sand grains can immediately react to the varying bottom shear stress in a

quasi-steady manner. This is confirmed by a number of coarse-sand OWT

studies in the sheet-flow regime, e.g. Ribberink and Al-Salem (1995) and

O’Donoghue and Wright (2004) for flow skewness, van der A et al. (2010)

and Ruessink et al. (2011) for flow asymmetry. However, it is also observed

that in some fine-sand OWT tests the phase-lag effect, i.e. suspended fine

particles cannot immediately settle back to the movable bed at the moment

of flow reversal, can reduce the onshore net transport rate or even lead to a

net offshore transport rate. Some OWT studies also reveal another impor-

tant feature of WBLs with skewness and asymmetry, i.e. a boundary layer

streaming in the negative (usually offshore) direction (e.g. Ribberink and Al-

Salem, 1995; van der A et al., 2011). A number of analytical and numerical

models (e.g. Trowbridge and Madsen, 1984; Holmedal and Myrhaug, 2006;

Kranenburg et al., 2012; Yuan and Madsen, 2015) have illustrated that this

streaming (hereafter referred to as the TI (turbulence-imbalance) stream-

ing) is due to the imbalance in flow turbulence between the two half-cycles,

so it is different from another well-known wave boundary layer streaming

(LH-streaming hereafter) first proposed by Longuet-Higgins (1953), which is

driven by a net downward transfer of momentum due to the fact that the
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horizontal and vertical wave orbital velocities in the close vicinity of the bed

are not 90◦ out of phase. Many OWT and large-flume experimental studies

have shown that the streaming-related net sediment transport rate can be

quite substantial, so a few numerical or analytical models are established to

investigate the influence of TI- and LH-streamings on net sediment trans-

port rate (e.g. Ruessink et al., 2009; Holmedal and Myrhaug, 2009; Fuhrman

et al., 2013; Kranenburg et al., 2013).

The real coastal waves are always irregular, so a big question is how to

extend the existing periodic-wave-based knowledge and predictive models to

irregular-wave scenarios. Although some numerical models can directly sim-

ulated boundary layer flows under a train of irregular waves (e.g. Holmedal

et al., 2003; Tanaka and Samad, 2006), this approach is still too compu-

tationally expensive for practical applications. In the literature two major

approaches are commonly adopted to realize the extension, i.e. the proba-

bilistic and the representative-wave approaches. The latter simply conceptu-

alizes the irregular waves as a representative periodic wave. Madsen (1994)

analytically showed that a periodic wave with its amplitude and period be-

ing the root-mean-square (RMS) velocity and average period of the irregular

wave bottom orbital motion, respectively, can be used for modeling irregu-

lar wave-current boundary layers. This model is recently validated by the

OWT experiment of Yuan (2016). The representative wave for modeling

sediment transport is rather arbitrarily defined. For example, van der A

et al. (2013) proposed to use the significant amplitude and the peak spec-

tral period of wave bottom orbital velocity in their formula for net sediment

transport rate under non-breaking waves and currents, which is calibrated
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mostly based on periodic-wave experiments. It can be hypothesized that dif-

ferent representative waves should be adopted for different boundary layer or

sediment transport processes, so more research effort is required to further

improve the representative-wave approach. The probabilistic (or wave-by-

wave) approach treats irregular waves as a set of independent periodic waves

following a certain probability distribution, so existing periodic-wave-based

models can be directly applied to yield the probability distributions for some

physical quantities of interest, e.g. net sediment transport rate. Myrhaug

(1995) followed by Myrhaug et al. (2001) adopted this method to obtain

the probability distribution of the maximum wave bottom shear stress under

waves or wave-current flows with the assumption that the wave motion is

a stationary Gaussian narrow-band random processes. The same principle

has been adopted for modeling bedload transport under wave-current flows

(Holmedal and Myrhaug, 2004) and sediment suspension under the influence

of skewed and asymmetric bottom shear stress and LH-streaming (Myrhaug

et al., 2015). The advantage of the probabilistic approach is that it can rig-

orously account for the difference among individual waves, e.g. each wave

can have its own skewness and asymmetry. However, this approach assumes

that a wave can be modeled as being in a periodic wave train, which may

not be suitable for some boundary layer processes that cannot react imme-

diately to the change of wave condition. It can be argued that WBLs may

have some “memory”, i.e. some residual influence of a wave cycle will persist

into the next wave cycle. This memory effect makes waves within a irregular

wave train not truly independent, and therefore undermines the probabilis-

tic approach. Should these concerns be cleared with full-scale experimental
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evidences, the probabilistic approach will be a powerful tool, which can be

used in developing or verifying the representative-wave approach (e.g. Yuan

and Madsen, 2010).

Very few experimental studies of turbulent boundary layers under irreg-

ular waves are available in the literature. Simons et al. (1994) directly mea-

sured bottom shear stress under irregular waves plus currents using shear

plates in their wave-basin experiments. Chassagneux and Hurther (2014)

conducted a flume experiment of wave boundary layer under irregular break-

ing waves over a movable bed. These small scale experiments provide some

insights to the bottom shear stress and the flow structure of irregular wave

boundary layers. Bhawanin et al. (2014) reported a full-scale OWT studies of

irregular wave boundary layers over fixed rough beds. Their irregular waves

were generated by amplitude-modulating a train of periodic waves, so the

memory effect can be studied by comparing tests with different modulations.

Their experimental results suggest that the memory effect is probably neg-

ligible in the near-bottom region, but are not totally absent at higher levels

from the bed. They suggested that more experimental work with detailed

measurements of boundary layer flows and bottom shear stress is still re-

quired to further elucidate the memory effect. It is also unclear whether and

how wave irregularity affects the bottom shear stress and the TI-streaming

of irregular WBLs with skewed and asymmetric free-stream velocities.

In this study full-scale experiments of irregular turbulent wave bound-

ary layers are conducted over fixed rough bottoms in an OWT. The main

objectives are (1) to study the memory effect on key wave boundary layer

physics and (2) to investigate how wave irregularity influences the bottom
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shear stress and the TI-streaming of skewed and asymmetric irregular WBLs.

The outline of this paper is as follows. The experimental conditions and some

data analysis methodology are introduced in Section 2. Section 3 discusses

the memory effect on boundary layer turbulence, Reynolds-averaged flow and

bottom shear stress. The influences of wave irregularity on skewed and asym-

metric irregular WBLs are presented in Section 4. Conclusions are provided

in Section 5.

2. Experimental conditions and data analysis methodology

2.1. Experimental facility

Our experiments are conducted using the Wave-Current-Sediment (WCS)

facility at the hydraulic lab of National University of Singapore. The WCS

is essentially a U-shape OWT with a 10 m-long, 40 cm-wide and 50 cm-

deep horizontal test section. A uniform oscillatory flow in the test section is

generated by a hydraulic-driven piston located in a vertical cylindrical riser

attached to one end of the test section. Thus, oscillatory flows equivalent to

full-scale near-bed flows under coastal waves can be produced, except that

the vertical wave orbital velocity is absent in the WCS. For simplicity we

hereafter refer to these oscillatory flows as waves. Some previous studies,

e.g. Yuan and Madsen (2014) and Yuan (2016), have demonstrated that the

WCS can precisely generate the intended periodic or irregular waves, so the

readers are referred to these publications for details on the WCS. Our exper-

iments are conducted over two fixed rough bottoms, i.e. a sandpaper bottom

and a marble bottom. They are created by gluing roughness elements onto

flat aluminum plates, i.e. slip-resistant sandpaper tapes (physical roughness
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height of about 1mm) and a mono-layer of 12.5mm-diameter ceramic mar-

bles, respectively. Through a rigorous log-profile fitting analysis Yuan and

Madsen (2014) obtained the theoretical bottom location z = 0 and equivalent

Nikuradse sand grain roughness kN for these two bottoms. For the sandpa-

per bottom, z = 0 is found to be 0.6±0.1 mm below the mean crest level of

bottom roughness elements and kN is 3.7±0.1 mm. For the ceramic-marble

bottom, z = 0 is 4.0±0.4 mm below the top of the marbles and kN is 20±3

mm. These results are directly adopted in this study.

2.2. Flow conditions

The free-stream velocity of irregular wave boundary layers are obtained

by modifying a train of periodic waves as follows. Three periodic wave shapes

are considered in this study, i.e. sinusoidal, skewed and asymmetric waves.

The free-stream velocity for the latter two are given by the superposition of

two harmonics

up,∞(t) = U∞1 [cos(ωt) + α cos(2ωt+ ϕ∞2)] (1)

where ω = 2π/T is the wave angular frequency with T being the wave period,

U∞,1 is the amplitude of the first-harmonic velocity, α is the relative magni-

tude of the second-harmonic velocity, which should be less than 0.25 to avoid

the occurrence of secondary peaks within one wave cycle, and ϕ∞,2 is the

second-harmonic phase, which is 0 for skewed waves and π/2 for asymmetric

waves. For non-breaking coastal waves, this two-harmonic approximation

can reasonably capture the skewness and the asymmetry of bottom orbital

velocity. In this study, the second-harmonic amplitude is fixed to be 1/5 of

the first-harmonic velocity, i.e. α = 1/5 in Eq. (1). As shown in Fig. 1, the
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obtained nonlinear features are quite significant, e.g. the maximum velocity

is 5/3 times the minimum velocity for skewed waves.

A simple way to introduce wave irregularity is modulating the amplitude

of a periodic wave train, i.e.

um,∞(t) =
A− cos 2π

Tr

t

A+ 1
up,∞(t) (2)

where Tr is the recursive period of the wave package and A is a modification

factor. We hereafter refer to such irregular waves as modulated waves. The

modification factor A is chosen to be 2, so the amplitude of the largest wave

is three times that of the smallest wave. Fig. 2a shows the free-stream ve-

locity of a modulated-wave sequence with the sinusoidal wave shape. Here

an individual wave is defined as the oscillatory flow between two neighboring

zero up-crossings of the free-stream velocity (the crosses in Fig. 2), so the

modulation will only change the wave amplitude but keep the wave period.

To avoid a significant change of the wave shape, the recursive period, Tr, is

set to 30 times the wave period T for all modulated-wave sequences in this

study. However, this also limits the wave irregularity, since the variation of

wave amplitude is quite gradual due to the large number of waves within a

recursive period. Therefore, it can be expected that individual waves within

a modulated-wave test are very likely to behave as periodic waves. To en-

hance wave irregularity, another type of irregular-wave sequence is created by

randomly recombining individual waves separated from a modulated-wave se-

quence (hereafter referred to as the random-wave sequence). Fig. 2b presents

the random-wave sequence reconstructed based on the modulated-wave se-

quence in Fig. 2a. The irregularity is much more significant for the random

waves, e.g. a large wave may follow a much smaller wave or vice versa (see
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the waves highlighted in Fig. 2b). These two methods to generate irregular-

wave sequences is not aimed at mimicking the boundary layer flows under

a realistic sea state, e.g. in reality both wave period and wave shape can

vary wave-by-wave and the wave amplitude should follow certain probability

distribution. However, this does not defeat the main objectives of this study,

i.e. investigating the memory effect and the influences of wave irregularity.

Our tests are conducted in pairs, i.e. a random-wave test is paired with its

corresponding modulated-wave test. This allows us to identify an individual

wave (e.g. W1 in Fig. 2) and compare its behaviors within the two tests,

which can illustrate the memory effect. Also, a pair of tests will have the

same wave period, same wave shape but different levels of wave irregularity,

so a comparison of the experimental results between the paired two tests can

elucidate the influences of wave irregularity on some physical quantities of

interest, e.g. the TI-streaming. Three pairs of tests corresponding to three

wave shapes are conducted over each rough bottom, so totally twelve tests are

reported in this paper, which are summarized in Table 1. All tests have the

same target RMS flow velocity (urms =1.05 m/s), and the measured values

listed in Table 1 are very close to the target. A single wave period, T = 6.4

s, is adopted, so the recursive period Tr for all tests is 192 s (30 waves per

recurrence), The RMS Reynolds number defined as Rerms = urmsArms/ν,

where ν is the water kinematic viscosity and Ab,rms = urmsT/2π, is about

1.4 · 106 for all tests, which is sufficiently high for ensuring prototype flow

conditions. Based on the previous study of Yuan and Madsen (2014), our

tests should be mostly within the fully-rough turbulent regime, expect for

the smallest waves over the sandpaper bottom, so for simplicity the bottom
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roughness kb is taken as the Nikuradse equivalent sand grain roughness kN

in the following data analysis.

2.3. Velocity measurements

A two-dimensional Particle Image Velocimetry (PIV) system supplied by

TSI Corporation is used for measuring bottom boundary layer flows in the

plane of the lateral centerline of the facility. A double-pulsed YAG135-15

Litron Nano L laser produces a thin laser sheet through the transparent lid

of the test section, which illuminates the near-bed flow seeded with tracing

particles. A digital camera captures a pair of images of the target flow field

with a short time interval, and the velocity measurements are eventually

obtained through a cross-correlation analysis of the image pair. The system

setup generally follows the previous study of Yuan and Madsen (2014), so

the reader is referred to this paper for more details on the PIV system.

In all experiments, the vertical resolution of PIV measurement is about

60µm/pixel, which is determined by the distance from measurement plane to

the digital camera (roughly 1 m) and the camera lens’ focal length (105 mm).

A 128-by-16-pixel interrogation grid is adopted in the PIV cross-correlation

analysis, and the algorithm reports a velocity vector in each quadrant of the

interrogation grid. Thus, the horizontal and the vertical resolutions of veloc-

ity measurements are roughly 4 mm and 0.5 mm, respectively. For tests over

the sandpaper bottom, a 2-mega-pixel (1600-by-1200) camera is used to allow

a high sampling frequency (10Hz) and a vertical image coverage (about 70

mm) that is sufficient to cover the major part of the boundary layer. For the

marble-bottom tests, since the boundary layer thickness is generally over 100

mm due to the larger bottom roughness, a 4-mega-pixel camera is adopted
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to have a larger vertical coverage (about 120 mm) but a lower sampling rate

(5Hz). Therefore, totally 64 and 32 samples per wave period are captured

for tests over the sandpaper and the marble bottoms, respectively. The low-

est level with valid PIV measurements is about 2 mm above the crests of

roughness elements due to the bottom reflection of laser sheet. Limited by

the memory of the PIV computer, a continuous measurement covers three

192-second recursive periods for all tests.

2.4. Data analysis methodology

Since the flow in the WCS is longitudinally uniform, the velocities mea-

sured at the same vertical level should be homogeneous, expect for the instan-

taneous turbulence fluctuations. Thus, the measured 2D velocity field can

be spatial- and ensemble-averaged into a Reynolds-averaged velocity profile

< ξ(z, t) >=
1

MN

M
∑

m=1

N
∑

n=1

ξ(xm, z, t + (n− 1)Tr), 0 ≤ t ≤ Tr (3)

where ξ is either the horizontal or vertical component of flow velocity (u,w),

t is time, z is the vertical coordinate, xi is the horizontal coordinate of the

i-th velocity measurement of the total I velocity measurements at level z,

and N = 3 is the number of recursive periods. The associated turbulence

fluctuation is then given by

ξ′(x, z, t) = ξ(x, z, t)− < ξ(z, t) > (4)

Unless otherwise indicated, we will simply use ξ(z, t) to denote the Reynolds-

averaged quantities in the following text. The Reynolds stress normalized by

water density is then obtained by calculating the covariance

τR(z, t)

ρ
= − < u′v′ > (5)
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where the operator <> is defined in Eq. (3). A turbulent intensity

k(z, t) =< u′2 + v′2 > (6)

is introduced to represent the strength of turbulence.

Many previous studies have demonstrated that the instantaneous Reynolds-

averaged velocity profile of turbulent wave boundary layers follows a loga-

rithmic law in the very near-bottom region. Thus, the bottom shear stress

in this study is obtained through a log-profile fitting analysis, i.e. the shear

velocity u∗(t) is obtained by fitting the following distribution

u(z, t) =
u∗(t)

κ
ln(

z

kb/30
) (7)

to the bottom-most five valid measurements at the instance t, where κ is the

von Karman constant and kb is the bottom roughness. The instantaneous

bottom shear stress τb(t) is then obtained as

τb(t) = ρ|u∗(t)|u∗(t) (8)

This method is invalid during a short time window (about 30% of a wave

period) around the flow reversals, since the occurrence of boundary layer

separation due to a strong adverse pressure gradient, i.e. ∂u∞/∂t opposes

u∞, leads to the absence of a logarithmic layer. Nevertheless, it still works

as an interpolation for the gaps around flow reversals, when the actual bot-

tom shear stress is believed to be close to zero. Yuan and Madsen (2014)

have extensively discussed the validity of the log-profile fitting analysis and

showed that it is the only valid method to infer bottom shear stress from

PIV measurements for rough-bottom tests in the WCS.
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3. Memory effect due to flow irregularity

For simplicity all the following discussions of the memory effect are based

on the tests with the sinusoidal wave shape, since the same conclusions can

be applied to other tests. Here we consider two typical individual waves

in the two sandpaper-bottom tests (SIN1 s and SIN2 s), of which the free-

stream velocities are highlighted as W1 and W2 in Fig. 2. In the random-

wave test, W1 is a small wave, i.e. the amplitude of its free-stream first-

harmonic velocity is Ub,1=0.56m/s, following a roughly three-times larger

wave, while W2 is a large wave (Ub,1=1.55m/s) following a much smaller wave

(Ub,1 is 0.48m/s). Since the memory effect depends on the change of wave

condition, it can be studied by comparing these two waves in the modulated-

and the random-wave tests. We shall start with the experimental results on

turbulence, since the memory effect can be straightforwardly observed from

the intra-period variation of some turbulence statistical values. Following

this, the memory effect on Reynolds-averaged velocity and bottom shear

stress are also discussed.

3.1. Memory effect on turbulence

Two turbulence statistical values, i.e. the turbulence intensity k(z, t) and

the Reynolds stress τR(z, t)/ρ, are obtained from the PIV measurements. As

discussed by Yuan and Madsen (2014), the PIV algorithm essentially filters

out turbulence with a spatial scale smaller than the interrogation grid ( of

the order 1 mm) and a temporal scale shorter than the time interval between

a pair of PIV images (of the order 100 µs). Thus, the obtained τR(z, t)/ρ

and k(z, t) are not quantitatively correct, but some qualitative conclusions
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can still be made based on them.

3.1.1. Turbulence intensity

Fig. 3 presents the contour plots of turbulence intensity variation with

time and distance to the bottom for the two selected waves, W1 and W2, over

the sandpaper bottom. For waves within the modulated-wave test, as shown

in Fig. 3 (c,d), the experimental results generally resemble those for periodic

wave boundary layers, e.g. Sleath (1987) and Hay et al. (2012). Turbulences

are mainly generated at the bottom, so the near-bottom turbulence intensity

increases (decreases) during the acceleration (deceleration) stage of each half-

period, and the peak values occur around the moment of peak free-stream

velocity. Turbulence intensity generally decays as turbulences are diffused up

to higher levels. Due to the low wave irregularity of the modulated-wave test,

the contour plots in Fig. 3 (c,d) exhibit two almost identical lobes for the two

half-periods, which should be expected for periodic sinusoidal wave boundary

layers. Since the bottom-generated turbulence needs time to be diffused

upward, during the initial stage of a wave cycle the flow at high levels is

primarily controlled by the residual turbulence from the preceding wave cycle.

As shown in Fig. 3e, the turbulences generated by the large preceding wave

of W1 persist into W1’s first half-cycle, which leads to very high turbulence

intensities around the upper-left corner of the contour plot. The W2 wave

follows a much smaller wave in the random-wave test, so before the arrival

of its self-generated turbulence very weak residual turbulence occupies the

high levels, making the upper-left corner of Fig. 3f almost white. Also, the

turbulence intensity of W2’s first half-cycle also seems to be reduced by the

enhanced wave irregularity.
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These experimental evidences clearly suggest that the memory effect at

high levels can be quite significant during the first half-period due to the

residual turbulences.

3.1.2. Reynolds stress

The experimental results on Reynolds stress echo those on turbulence

intensity. As shown in Fig. 4 (a,b) the variations of Reynolds stress with time

and vertical elevation for the two waves in the modulated-wave test are again

similar to those observed for periodic wave boundary layers. Reynolds stress

is produced near the bottom and diffused upward into the flow interior, and

the peak Reynolds stress in the near-bottom region occurs almost in phase

with the peak free-stream velocity. The positive and the negative lobes of

Reynolds stress in the contour plot are almost identical due to the symmetry

of the sinusoidal wave shape. Some memory effects can be clearly observed

for the two waves in the random-wave test, as shown in Fig. 4 (c,d). For the

W1 wave, very strong negative Reynolds stress left by the preceding wave

controls the upper part of W1’s boundary layer during most of its first half-

cycle, while W1’s self-produced positive Reynolds stress dominates in the

very near-bed region. It seems that the strong overlying residual turbulences

also enhances W1’s positive Reynolds stress in the near-bed regime during the

positive half-cycle, i.e. Fig. 4c has a darker near-bed red region than Fig. 4a.

The difference between Fig. 4a and c during the negative half-period, i.e. the

blue (negative) main lobe after t/T = 0.5, is quite negligible, indicating that

the memory effect does not persist into the negative half-period. For the W2

wave shown in Fig. 4b, the memory effect due to a much smaller preceding

wave leads to the absence of noticeable negative Reynolds stress at high levels
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during the initial stage of the positive half-cycle, while the two main lobes in

Fig. 4b are quite similar to those in Fig. 4d, except that the Reynolds stress

within the positive (red) lobe is reduced slightly by the memory effect.

3.1.3. Near-bed turbulence

The near-bed turbulence is directly related to the bottom shear stress,

and therefore is worth a close inspection. To better assess the memory effect

on the near-bed turbulence, Fig. 5 presents the intra-period variation of tur-

bulence intensity and Reynolds stress measured at the bottom-most level of

valid PIV measurements (zmin = 2.1 mm). The footprint of the memory ef-

fect can be clearly observed for the W1 wave. When it is in the random-wave

test (Fig. 5 (a,c)), the strong residual turbulence from the preceding wave

dramatically increases the near-bed turbulence intensity until the flow rever-

sal (t/T ∼ 0.5). However, the effect on Reynolds stress is only noticeable

before the peak free-stream velocity of the first half-cycle, i.e. the Reynolds

stress is higher when W1 is in the random-wave test. For the W2 wave,

the experimental results from the two tests are almost identical. This is be-

cause the strong self-produced bottom turbulence can quickly supersedes the

residual turbulence.

We can also make an overall assessment of the memory effect on the

near-bed turbulence based on all waves in the two sandpaper-bottom tests

(SIN1 s and SIN2 s). For each individual wave, we simply consider the

period-averaged turbulence intensity

k̄(zmin) =
1

T

∫ T

0

k(zmin, t)dt (9)

and the amplitude of the first-harmonic Reynolds stress, τR1(zmin)/ρ, ob-
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tained from Fourier analyzing the intra-period variation of Reynolds stress

at the bottom-most level zmin = 2.1 mm. Since all waves have the same

wave period and bottom roughness, the wave condition can be represented

by Ab/kN , and therefore the measurements are plot against Ab/kN in Fig. 6.

As we can see, both k̄(zmin) and τR1(zmin)/ρ increase with Ab/kN as expected.

The agreement between the two tests are generally quite good, except for the

turbulence intensities of the very small waves (low values of Ab/kb). This is

not supervising, because Fig. 5 already showed that even for the worst case

(e.g. the W1 wave) the memory effect is only significant for the k(zmin, t)

during the first half-cycle. Therefore, we can conclude that the near-bed

turbulence of an individual wave generally behaves as if the wave is within a

periodic-wave train, despite of some limited memory effect at the beginning

of a wave cycle.

3.2. Memory effect on Reynolds-averaged (RA) velocity

3.2.1. Velocity profiles

The instantaneous RA velocity profiles within a wave period generally

exhibit the typical features observed for periodic wave boundary layer flows,

e.g. when the free-stream flow is close its peaks, the boundary layer starts

with a logarithmic distribution in the very near-bed region and then transits

into the free-stream flow through an overshoot structure.

For the two typical waves, W1 and W2, discussed in the previous sub-

section, the memory effect on the instantaneous RA velocity is most signif-

icant during the acceleration stage of W1’s first half-cycle, so some typical

profiles of W1 are presented in Fig. 7. To facilitate the following discussions,

we hereafter refer to the profiles from the modulated- and the random-wave
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tests as M- and R-profiles (the dashed and the solid lines in Fig. 7), respec-

tively. At the very beginning of W1, e.g. the instance P1 (t/T = 3/64), the

difference between the two profiles is immaterial at the highest level of mea-

surements, simply because of the same imposed free-stream velocity, but the

R-profile’s velocity becomes increasingly larger than that of the M-profile as

the bottom is approached. At the bottom-most level, the difference is about

a factor of 2. Given that W1 follows a much larger wave (hereafter named as

W1p) in the random-wave test, this difference may suggest that at instance

P1 the near-bed flow still “memorizes” the RA velocity of W1p. To demon-

strate this, we identity W1p in the modulated-wave test (SIN1 s) and pick

out its RA velocity profile at t/T = 3/64. This “ghost” profile is plotted in

Fig. 7b (the red dots) for comparisons. As we can see, the difference between

the R-profile and the “ghost” profile is only about 10% in the near-bed re-

gion, and the two profiles becomes much more diverged at higher levels due

to the difference in free-stream velocity. These observations suggest that the

flow memory can control the near-bed RA velocity during the initial stage

of a wave cycle. As the flow continues into the W1’s wave cycle, the mem-

ory effect quickly decays as the self-produced near-bed turbulence becomes

dominant. As shown in Fig. 7c and d, the difference between the M- and the

R-profiles becomes smaller at instance P2 (t/T = 1/8), and almost vanishes

when the peak positive free-stream flow occurs, e.g. instance P3 (t/T = 1/4).

Many previous studies have shown that the first-harmonic velocity dom-

inates the frequency spectrum for periodic sinusoidal oscillatory boundary

layers. Thus, as an overall assessment of the memory effect over the entire

wave period, we Fourier analyze the RA velocities of the two typical waves,
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W1 and W2, in the two sandpaper-bottom tests (SIN1 s and SIN2 s) to get

the amplitude U1(z) and the phase ϕ1(z) of their first-harmonic velocities.

For simplicity, we again denote the profiles from the modulated- and the

random-wave tests as M- and R-profiles, respectively. As shown in Fig. 8,

these experimental results are highly similar to those obtained from periodic-

wave experiments of Yuan and Madsen (2014).The U1 profiles have overshoot

structures, and ϕ1 increases towards the bed, indicating that the near-bed

flow leads the free-stream flow in phase. For both W1 and W2 waves, the

difference between the R- and the M-profiles is very small in the near-bed

region. In the region z < 10 mm, almost a perfect agreement between the

two U1 profiles of each wave is observed, and the difference in ϕ1 is quite im-

material, i.e. the differences at the bottom-most level are only 3.5◦ and 1.3◦

for W1 and W2, respectively. This indicates that the memory effect on the

near-bed RA velocity can be considered negligible, if the whole wave cycle is

considered. Some slightly larger differences are observed at high levels. The

overshoot of U1 profile is larger when the wave is within the random-wave

sequence. There is also some small difference in the free-stream velocities,

which is probably due to the imperfect flow generation. Comparing the ex-

perimental results for W1 and W2, it seems that the memory effect on the

RA velocity is more significant for a small wave following a large wave, which

is in agreement with the experimental results on turbulence statistical values.

3.2.2. Boundary layer thickness

A characteristic wave boundary layer thickness, δm, is defined as the

distance from the maximum overshoot of the U1 profile to the bottom. Yuan

and Madsen (2014) following van der A et al. (2011) calibrated the following
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power-law formula for δm/kb based on a collection of OWT periodic-wave

experiments over rough bottoms

δm
kb

= 0.079

(

Ab

kb

)0.81

(10)

where kb is the bottom roughness, and Ab is the excursion amplitude of

the free-stream flow. With a wave-by-wave analysis, we can obtain δm for

all individual waves in the four tests with the sinusoidal wave shape (see

Table 1), and compare the measurements with the formula predictions, which

essentially represents the periodic-wave measurements from similar studies.

As shown in Fig. 9, the data points gather into two data bands, i.e. a lower

one containing measurements from the two marble-bottom tests (SIN1 m and

SIN2 m) and an upper one containing measurements from the two sandpaper-

bottom tests (SIN1 s and SIN2 s). No noticeable difference between the

modulated- and the random-wave tests are observed, even for the small waves

(the lower ends of data bands). Also, the agreement between our irregular-

wave results and the predictive formula is very good, i.e. the data points

distribute evenly on both sides of the solid line and nearly all points are within

a factor of 1.2 (dashed lines) from the prediction. These results suggest that

a wave boundary layer can be fairly developed within one wave cycle, so the

boundary layer thickness is not sensitive to the memory effect.

3.3. Memory effect on bottom shear stress

The instantaneous bottom shear stress, τb(t)/ρ, is obtained from log-

profile fitting the instantaneous Reynolds-averaged (RA) velocity profiles in

the very near-bottom region, so it can be expected that the memory effect

on τb(t)/ρ should be similar to that on the near-bed RA velocity. Fig. 10
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presents the obtained τb(t)/ρ for the two typical individual waves, W1 and

W2, which have been extensively discussed so far. Markers are only shown

for the phases when the instantaneous boundary layer has a reasonable near-

bottom logarithmic region.

The comparison of τb(t)/ρ obtained from the modulated- and the random-

wave tests clearly shows that the memory effect is most significant during

the acceleration stage of W1’s first half-cycle. Before the phase of peak free-

stream velocity (t = 1/4T ), the random-wave τb(t)/ρ (red dots) is larger

than the modulated-wave τb(t)/ρ (black open circles) by 10-50%, which is in

accordance with the observations in Fig. 7 that the near-bed RA velocity of

W1 in the random-wave test is significantly enhanced due to the flow memory

before the free-stream velocity reaches its first peak. This also agrees with the

comparison for the near-bed Reynolds stress shown in Fig. 5c, i.e the random-

wave Reynolds stress is much larger for t < 1/4T . The two measurements for

the W2 wave shown in Fig. 10b are almost identical, so it can be concluded

that the memory effect on bottom shear stress is only significant during the

initial stage of small waves following big waves.

The measurements shown here also suggest that the maximum values and

the intra-period variation of bottom shear stress are insignificantly influenced

by the memory effect, so it is very likely that wave bottom shear stress can

be modeled in a wave-by-wave manner. More discussions on this will be

presented in Section 4.2.
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4. Irregular wave boundary layers with flow skewness and asym-

metry

In this section we present the experimental results for the tests with the

skewed and the asymmetric wave shapes, i.e. the eight tests with pre-fix

SKW and ASY in Table 1. For these tests, the memory effect discussed in

the previous section is generally applicable, so this section focuses on the

effects of wave irregularity on the boundary layer streaming and the intra-

period variation of bottom shear stress, which are relevant to producing net

sediment transport.

4.1. Boundary layer (TI-) streaming

Many previous OWT studies with velocity measurements have shown

that a weak current ū(z) is embedded in the strong skewed or asymmetric

oscillatory flows, e.g. Ribberink and Al-Salem (1995) and van der A et al.

(2011). In fact, ū(z) is the residue after the cancellation of the TI-streaming

ūs(z) and a balancing return current ūc(z) self-generated by the facility to

ensure mass conservation, i.e.

ū(z) = ūc(z) + ūs(z) (11)

If the direction of the enhanced half-cycle is taken as the positive direction,

ūs(z) is negative and stronger than ūc(z) (positive) in the very near-bottom

region, so ū(z) starts with negative values close to the bottom and becomes

positive at higher levels. Yuan and Madsen (2015) developed a predictive

model for periodic turbulent oscillatory boundary layers in OWTs (see ap-

pendix A for key details). This model can separately predict ūs(z) and ūc(z),
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which allows decomposing the predicted mean bottom shear stress, τ̄b, into

three components related to (1) the oscillatory flow, (2) the TI-streaming

and (3) the facility-generated return current, as shown in Eq. (A.8). Yuan

and Madsen (2015) showed that the first two components will always cancel

each other, so τ̄b is solely due to the return current. Since ūs(z) have a com-

parable magnitude as ūc(z) (they largely cancel each other), and a larger τ̄b

is associated with a stronger ūc(z), τ̄b can therefore indicates the strength

of ūs(z). Their model predictions suggested that the TI-streaming of purely

skewed waves are much stronger than that of comparable purely asymmet-

ric waves, which is supported by the experimental results that τ̄b of purely

skewed waves is much stronger. Therefore, we can use the measured ū(z)

and τ̄b to investigate the TI-streaming.

The mean current profile, ū(z), is obtained by averaging the Reynolds-

averaged velocity over a recursive period. Since our tests are conducted in

pairs, i.e. each wave shape has two tests (modulated and random) with the

same package of individual waves, we can compare their ū(z) to see if the

wave irregularity leads to some differences. As shown in Fig. 11, the gen-

eral behavior of the measured ū(z) follows what have been observed from

periodic-wave tests. The magnitude of ū(z) is very weak, i.e. less than 2.5

cm/s, and is negative from the bottom to roughly z =40-50 mm. Compar-

ing the measurements for each pair of tests, it can be clearly seen that the

near-bed negative ū(z) of a random-wave test is consistently weaker than

that of the paired modulated-wave test. This implies that the TI-streaming

is probably weaker for the random-wave tests. The experimental values of

mean bottom shear stress, τ̄b, listed in Table 2 further support this argu-
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ment, i.e. τ̄b of the random-wave tests is consistently smaller. Thus, our

experimental results suggest that the wave irregularity can reduce the TI-

streaming. However, it should be noted that this conclusion may not be

valid if the free-stream velocity, u∞(t), of the random-wave tests is gener-

ated differently. In this study u∞(t) of individual waves are cut out from

the modulated-wave’s u∞(t) based on the zero up-crossings, so the memory

effect will primarily influence the positive half-cycles and presumably will

also modify the turbulence imbalance between the two half-cycles, which is

the origin of the TI-streaming. If we were to cut out individual waves based

on zero down-crossings, then the negative half-cycles would be subject to the

primary memory effect. Since flow skewness or asymmetry differentiates the

positive and negative half-cycles, the influence of memory effect may depends

on which half-cycle goes first.

The wave-by-wave variation of TI-streaming in-principle can be investi-

gated based on either the residual current ū(z) or the mean bottom shear

stress τ̄b. Unfortunately the experiential error for ū(z) of all tests and τ̄b of

the asymmetric-wave tests are too large to yield meaningful wave-by-wave

measurements, since they are very small signals that would require a large

number of recursive periods to allow a small enough confidence limits. The

experimental values of τ̄b for the skewed-wave tests, however, are sufficiently

large (about 5-10% of the maximum bottom shear stress). Thus, we here

discuss the wave-by-wave variation of TI-streaming based on the τ̄b of the

four skewed-wave tests. Since there is no wave-by-wave variation of wave

shape and wave period, a larger wave amplitude should leads to a stronger

TI-streaming and hence τ̄b. Thus, Fig. 12 plots the measured τ̄b versus the
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amplitude of the first-harmonic free-stream velocity U∞,1, and each subplot

compares a pair of tests with the same bottom condition. We also provide the

results of four tests from Yuan and Madsen (2014), i.e. their tests ST200 ce,

ST400a ce, ST200 sa and ST400a sa, which were conducted with the same

rough bottoms used in this study. The wave shape and the wave period (6.25

s) of these tests very close to the individual waves in our skewed-wave tests,

so we can directly plot them (the red crosses) in Fig. 12.

The data points clearly exhibit the expected trend that τ̄b increases with

U∞,1, which suggests that in the presented tests the TI-streaming is able to

response to the change of wave conditions. The modulated-wave tests (dots in

Fig. 12) have quite low wave irregularity, so the wave-by-wave TI-streaming

should behave as if the individual waves are within periodic wave trains.

There is indeed a good agreement between the modulated-wave results and

the periodic-wave results, despite that the data points are quite scattered

and only two periodic-wave points are available for each bottom condition.

If TI-streaming can immediately vary with the changing wave condition,

we shall see no difference between the paired modulated- and random-wave

tests, since they have the same basket of individual waves. However, a close

inspection of the random-wave results (the open circles) suggest that their

have smaller τ̄b for large wave conditions, i.e. the open circles are generally

between the dots for U∞,1 > 120 cm/s, but the opposite occurs for small wave

conditions. This observation can be interpreted as follows. If a large wave

in the random-wave tests follows a much smaller wave, its TI-streaming will

have to be developed in a “start-from-scratch” manner, and consequently is

less mature and weaker than when it follows a similar wave, which is the
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situation in our modulated-wave tests. The opposite can be expected for

small waves following large waves. Thus, we can say that the TI-streaming’s

response time can be longer than a wave period, depending on the wave

irregularity. Nevertheless, the overall agreement between the two data clouds

in each sub-figure of Fig. 12 is still good, indicating that the development

of TI-streaming still can be mostly finished within a wave period, so the

response time should not be much longer than a wave cycle.

The overall TI-streaming over the entire irregular wave package is insignif-

icant affected by the wave irregularity (at least for the skewed-wave tests), as

evidenced by the small difference in τ̄b (Table 2) and ū(z) (Fig. 11) between a

pair of tests. Therefore, if one were to wave-by-wave model the TI-streaming,

the obtained overall streaming should be reasonably accurate. However, it is

still questionable to wave-by-wave model the streaming-induced net sediment

transport rate under irregular waves, since the response time of sediment con-

centration also plays an role.

4.2. Intra-period variation of bottom shear stress

Since the memory effect on bottom shear stress is quite limited, i.e. only

the initial stage of a very small wave following a very large wave experiences

some noticeable influence, the intra-period variation of bottom shear stress

should display the key features that have been observed from periodic-wave

studies. To demonstrate this, Fig. 13 presents segments (60-s long) of the

obtained bottom shear stress together with the corresponding free-stream

velocity for two sandpaper-bottom random-wave tests with the skewed and

the asymmetric wave shapes (SKW2 s and ASY2 s), respectively. To facil-

itate the comparison, both quantities are normalized with their RMS val-
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ues. The flow skewness enhances (reduces) the free-stream velocity during

positive (negative) half-period, and therefore the obtained values of peak

positive bottom shear stress in Fig. 13a are much larger. The intra-period

variation of bottom shear stress also exhibits the skewness feature. For the

asymmetric-wave test shown in Fig. 13b, the time series of the bottom shear

stress resembles the asymmetric (forward-leaning) feature of the free-stream

velocity, and the positive peaks are larger than the negative peaks in mag-

nitude, which supports the argument that the shorter acceleration stage of

the positive half-cycle leads to a thinner boundary layer and therefore larger

bottom shear stress. For both tests shown in Fig. 13, the bottom shear stress

clearly leads the free-stream velocity in phase, which is another well-known

feature for wave bottom shear stress.

To further assess the effect of wave irregularity on the intra-period vari-

ation of bottom shear stress, we compare our experimental results with the

periodic-wave results of Yuan and Madsen (2014). Their experimental se-

tups are almost identical to this study, and their free-stream velocities are

also given by the superposition of two harmonics, i.e. Eq. (1), except that

their second-harmonic free-stream velocity is slightly larger, i.e. their α (rel-

ative magnitude of the second-harmonic free-stream velocity) is 0.25 (ours

is 0.2). Yuan and Madsen (2014) shows that the time-varying bottom shear

stress for periodic waves can be well approximated by the summation of the

first three harmonics of its Fourier-series representation, i.e.

τ̃b(t) = τb,1 cos(ωt+ϕτ1)+τb,2 cos(2ωt+ϕ∞2+ϕτ2)+τb,3 cos(3ωt+ϕτ3) (12)

where τb,1 to τb,3 are the amplitudes, ϕτ1 and ϕτ3 are the phase leads of

the first and the third harmonics relative to the first-harmonic free-stream
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velocity, respectively, and ϕτ2 is the phase lead of the second-harmonic bot-

tom shear stress relative to the second-harmonic free-stream velocity. The

amplitudes can be further expressed in terms of friction factors, i.e.

τb,1 =
1

2
f1ρU1

2

τb,2 =
1

2
f2ραU1

2

τb,3 =
1

2
f3ρU1

2

(13)

Through a wave-by-wave analysis, we obtain these friction factors and the

phase leads for our irregular-wave tests, and compare them with the results

reported by Yuan and Madsen (2014). We also compare the experimental

results with predictions yielded by the predictive model of Yuan and Madsen

(2015). In Appendix A, the model predictions of friction factors and phase

leads are further approximated with explicit formulas based on the relative

roughness X = Ab/kb and the two parameters (α and ϕ∞,2) describing the

second-harmonic free-stream velocity in Eq. (1). For a given wave shape, i.e.

fixed values for α and ϕ∞,2, all friction factors and phase leads are single-

variable functions ofX , so the experimental results and the model predictions

are separately presented for each wave shape in Figs. 14 (first harmonic)

and 15 (second harmonic). The third-harmonic bottom shear stress is not

shown here, as the conclusions are highly similar to the first harmonic, expect

that the data is much more scattered. Three key observations can be made

based on these two figures. Firstly, there is little data stratification between

experimental results of the modulated- and the random-wave tests, i.e. the

open-circles and the dots in all figures form overlapping data bands. Secondly,

the irregular-wave results from this study agree very well with the periodic-

wave results (red crosses). The friction factors from the periodic-wave tests

29



generally fall into the very narrow data bands of irregular-wave results. Only

for f2 under the skewed wave shape (Fig. 15a), the irregular-wave friction

factors are slightly larger for Ab/kb > 100 (the sandpaper-bottom tests),

but the relative difference is only about 10%. The overall agreement for

the phase leads are also quite good, despite of the much larger data scatter.

Thirdly, the model reasonably predicts the leading two harmonics of bottom

shear stress. For friction factors, the inaccuracy is generally within 5% for

all f1 predictions and f2 for asymmetric waves. The model overestimates

f2 for the skewed wave shape by up to 20-30% for Ab/kb > 100, which is

actually because the explicit formulas are developed without considering the

influence of TI-streaming, while the skewed waves have a quite sizable TI-

streaming. For phase leads, the model moderately overestimates the phase

leads by 5 ∼ 15◦. The inaccuracy may not be significant for predicting

certain processes, e.g. energy dissipation due to bottom shear stress and

sediment suspension. More discussions about the model performance are

already provided by Yuan and Madsen (2015).

These observations show that wave bottom shear stress can almost im-

mediately response to the change of wave condition and therefore can be

modeled as periodic waves in a wave-by-wave manner.

5. Conclusions

In this study full-scale experiments of irregular wave boundary layers

over rough bottoms are conduced in an OWT. Two types of irregular wave

sequences, one obtained by modulating a periodic wave train and the other

obtained by randomly re-combining individual waves, are adopted for a com-

30



parative study. The boundary layer flows are measured with a 2D PIV sys-

tem, and the measurements are spatial- and ensemble-averaged to yield the

Reynolds-averaged velocity and the turbulent fluctuations.

The memory effect, i.e. the local wave boundary layer flow receives some

residual influence from the preceding wave, is investigated by comparing the

experimental results of typical individual waves in the two irregular wave se-

quences. Both the measured turbulence intensity and Reynolds stress suggest

that during the initial stage of a wave period, i.e. before the free-stream flow

reach the first peak, the residual turbulence from the preceding wave dom-

inates across the boundary layer, until the self-produced turbulence, which

is originated from the bottom, becomes sufficiently strong. Therefore, the

memory effect on turbulence is most significant for very small waves follow-

ing very large waves, because the relatively strong residual turbulence can be

dominant for a long period of time. Nevertheless, this effect does not seem

to persist after the moment of the first peak free-stream velocity. Generally

speaking, the memory effect does not severely affect the near-bed turbu-

lence, which supports the observation that the wave bottom shear stress also

experiences little memory effect. For the Reynolds-averaged velocity, the

flow memory can make the instantaneous velocity profile closely resemble

the continuation of the preceding wave at the very beginning of a wave cy-

cle, but this effect vanishes very quickly. The experimental results on the

first-harmonic velocity shows that the key spatial and temporal variations

of Reynolds-averaged boundary layer flow are insignificantly influenced by

the memory effect. This is also confirmed by the fact that the wave-by-wave

boundary layer thickness closely follows the experimental results for periodic
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wave boundary layers.

For irregular wave boundary layers with the skewed or the asymmetric

wave shapes, a mean current is observed as in similar periodic-wave experi-

ments. It is a residue after the cancellation of the TI-streaming and a facility-

generated return current. The differences in this mean current between the

modulated- and the random-wave tests suggest that wave irregularity slightly

restricts the magnitude of the TI-streaming, which is supported by the mea-

surements of the mean bottom shear stress. The wave-by-wave variation

of the TI-streaming is investigated based on the wave-by-wave mean bottom

shear stress. Experimental results suggest that the TI-streaming can respond

to the change of wave condition in a fairly quick manner, so it can be more-

or-less developed within one wave period. Thus, a wave-by-wave modeling of

the TI-streaming seems to be plausible. The bottom shear stress of individual

waves within irregular wave trains are highly similar to those observed from

periodic-wave studies. The leading two harmonics of the bottom shear stress

are compared to the experimental results from similar periodic-wave tests and

also the model predictions of Yuan and Madsen (2015). Very good agreement

between irregular-wave and periodic-wave measurements are observed, and

the predictive model can accurately predict the magnitude (friction factors)

of the bottom shear stress, and slightly overestimates the phase leads.

Some implications on modeling sediment transport under irregular coastal

waves can be made based on our experimental results. The intra-period bed-

load sediment transport rate reacts to the instantaneous bottom shear stress

in a quasi-steady manner, since the response time of sediment grains to the

change of bottom shear stress is much shorter than a wave period. Therefore,
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bedload sediment transport rates under irregular waves can be modeled in a

wave-by-wave or probabilistic manner, e.g. Holmedal and Myrhaug (2004),

since we have shown that the wave irregularity has little effect on the intra-

period variation of bottom shear stress. A similar conclusion can be made for

modeling sediment pick-up rate at the bottom, which is also closely related to

the time-varying bottom shear stress. However, the suspended sediment con-

centration, which is controlled by turbulence diffusion, may not timely react

to the change of wave condition. For instance, the residual turbulence of a

strong preceding wave enhance the sediment suspension for a weak following

wave. Thus, the preliminary implication is that the probabilistic approach

can be applied for predicting the bedload transport rate, but may not be

suitable for predicting the suspended-load transport rate. Additional exper-

iments over movable sand bottoms should be performed to further assess

these implications.
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Figure captions

Figure 1. Normalized free-stream velocities of skewed and asymmetric

waves.
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Figure 2. Normalized free-stream velocity of irregular waves with the

sinusoidal wave shape: (a) modulated waves (the dashed line is the normal-

ized free-stream velocity of the entire recursive period, the crosses are zero

up-crossings and the thick solid lines highlights two typical individual waves

named as W1 and W2), (b) random waves (W1 andW2 waves are highlighted

by the thick solid lines).

Figure 3. Turbulence intensity (T.I.) for two typical waves, W1 and W2

(see Fig. 2), over the sandpaper bottom (i.e. in tests SIN1 s and SIN2 s).

The free-stream velocities for W1 and W2 are shown in (a) and (b), re-

spectively. (c) and (e) are contour plots showing the turbulence intensity

variation with height and time for W1 in the modulated and the random-

wave tests, respectively. (d) and (f) are similar to (c) and (e) but for the W2

wave.

Figure 4. Reynolds stress for two typical waves, W1 and W2 (see Fig. 2),

over the sandpaper bottom (i.e. in tests SIN1 s and SIN2 s). The free-stream

velocities are shown in Fig. 3 (a, b). (a) and (c) are the contour plots showing

Reynolds stress variation with height and time for the W1 wave, and (b) and

(d) shows the same results for the W2 wave.

Figure 5. Intra-period variation of turbulence in the very near-bottom

region for two typical waves, W1 and W2 (see Fig. 2), over the sandpaper

bottom (i.e. in tests SIN1 s and SIN2 s): (a) and (b) show the turbulence

intensity measured at the bottom-most level, zmin = 2.1 mm, (c) and (d)

show the amplitude of first-harmonic Reynolds stress measured at zmin.

Figure 6. Wave-by-wave variation of the representative turbulence sta-

tistical values measured at the bottom-most level for tests with the sinu-
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soidal wave shape (zmin = 2.1 mm for the sandpaper-bottom tests (SIN1 s

and SIN2 s) and zmin = 5.8 mm for the marble-bottom tests (SIN1 m and

SIN2 m)): (a) period-averaged turbulence intensity for individual waves, (b)

amplitudes of the first-harmonic Reynolds stress for individual waves.

Figure 7. Instantaneous Reynold-averaged velocity profiles during the

initial stage of the W1 wave (see Fig. 2) in the two sandpaper-bottom tests

(SIN1 s and SIN2 s): (a) free-stream velocity, (b)-(d) velocity profiles (the

red dots in (b) is the “ghost” velocity profile of the wave before W1 at phase

P1).

Figure 8. First-harmonic velocity of the two typical waves, W1 and W2

(see Fig. 2), over the sandpaper bottom (tests SIN1 s and SIN2 s): (a) and

(b) are the amplitude and phase profiles for the W1 wave, respectively, (c)

and (d) are similar to (a) and (b), but for the W2 wave.

Figure 9. Boundary layer thickness versus Ab/kb (open circles: measure-

ments from the random-wave tests (SIN1 s and SIN1 m), dots: measure-

ments from modulated-wave tests (SIN2 s and SIN2 m), solid line: a em-

pirical formula based on some previous periodic-wave measurements, dashed

lines: ±20% from the solid line).

Figure 10. Bottom shear stress for the two typical individual waves, W1

and W2, in tests SIN1 s (modulated) and SIN2 s (random).

Figure 11. Mean velocity profiles for tests with skewed or asymmetric

wave shapes: (a) the two sandpaper-bottom tests with the skewed wave

shape (SKW1 s and SKW2 s), (b) the two sandpaper-bottom tests with the

asymmetric wave shape (ASY1 s and ASY2 s), (c) the two marble-bottom

tests with the skewed wave shape (SKW1 m and SKW2 m) and (d) the
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two marble-bottom tests with the asymmetric wave shape (ASY1 m and

ASY2 m).

Figure 12. Wave-by-wave variation of mean bottom shear stress for

skewed-wave tests (open-circles: random-wave tests, dots: modulated-wave

tests, red crosses: periodic-wave tests from Yuan and Madsen (2014)): (a)

tests over the sandpaper bottom (SKW1 s and SKW2 s) and (b) tests over

the marble bottom (SKW1 m and SKW2 m).

Figure 13. Examples of free-stream velocity and bottom shear stress for

the random-wave tests with flow skewness or asymmetry: (a) test SKW2 s

and (b) test ASY2 s.

Figure 14. Friction factor and phase lead of the first-harmonic bot-

tom shear stress (solid line: explicit formulas given in Appendix A, dots:

measurements from modulated-wave tests, open circles: measurements from

random-wave tests, red crosses: measurements from periodic-wave tests by

Yuan and Madsen (2014)).

Figure 15. Friction factor and phase lead of the second-harmonic bottom

shear stress (symbols are as in Figure 14).
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Table 1: Summary of test conditions (urms is the measured RMS free-stream velocity,

U∞,1,max and U∞,1,min are the amplitudes of the first-harmonic free-stream velocity of

the largest and the smallest waves, respectively, and kb is the bottom roughness)

Test ID Irregularity Wave shape
urms

[m/s]

U∞,1,max

[m/s]

U∞,1,min

[m/s]

kb

[mm]

SIN1 m modulated sinusoidal 1.06 1.51 0.49 20.0

SIN2 m random sinusoidal 1.08 1.55 0.48 20.0

SKE1 m modulated skewed 1.07 1.50 0.49 20.0

SKE2 m random skewed 1.08 1.55 0.46 20.0

ASY1 m modulated asymmetric 1.07 1.49 0.49 20.0

ASY2 m random asymmetric 1.08 1.54 0.49 20.0

SIN1 s modulated sinusoidal 1.06 1.51 0.49 3.7

SIN2 s random sinusoidal 1.07 1.54 0.47 3.7

SKE1 s modulated skewed 1.08 1.49 0.49 3.7

SKE2 s random skewed 1.07 1.52 0.46 3.7

ASY1 s modulated asymmetric 1.06 1.49 0.48 3.7

ASY2 s random asymmetric 1.07 1.52 0.48 3.7
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Table 2: Mean bottom shear stress for tests with the skewed or asymmetric wave shapes

Modulated-wave tests Random-wave tests

Test ID τbc [cm2/s2] Test ID τbc [cm2/s2]

SKW1 s 5.32 SKW2 s 4.89

SKW1 m 12.47 SKW2 m 10.39

ASY1 s 2.16 ASY2 s 1.63

ASY1 m 4.06 ASY2 m 2.19
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Figure 4:
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Figure 7:
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Figure 10:
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Figure 13:
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Figure 14:
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Figure 15:
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Appendix A. Details of the Yuan and Madsen (2015)’s model

Yuan and Madsen (2015) developed a predictive model for periodic tur-

bulent oscillatory boundary layers in the OWT. Due to the longitudinal ho-

mogeneity, the momentum equation is

∂u

∂t
= −

1

ρ

∂p

∂x
+

∂

∂z

(

τ

ρ

)

(A.1)

where u is the bottom-parallel Reynolds-averaged flow velocity, ρ is water

density, t is time, p is water pressure, x and z are the bottom-parallel and

bottom-normal coordinates, respectively, and τ is the Reynolds stress. Fol-

lowing the boundary-layer approximation, the pressure gradient term can be

related to the free-stream velocity through

∂u∞

∂t
= −

1

ρ

∂p

∂x
(A.2)

where the free-steam velocity follows the two-harmonic expression, i.e. Eq. (1).

The Reynolds stress is related to the z-gradient of flow velocity with a tur-

bulent eddy viscosity
τ

ρ
= νT

∂u

∂z
(A.3)

Following Trowbridge and Madsen (1984) and Gonzalez-Rodriguez and Mad-

sen (2011), Yuan and Madsen (2015) expressed the time-varying turbulent

eddy viscosity , νT as the product of a mean eddy viscosity and a temporal

variation function

νT (z, t) = κu∗wcg(z)f(t) (A.4)

where κ is the von Karman constant, u∗wc is a characteristic shear velocity,

g(z) is the vertical variation function of the mean eddy viscosity and f(t) is
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a temporal-variation function. The boundary conditions for oscillatory flows

u =







u∞, z → ∞

0, z = z0 = kb/30
(A.5)

For a collinear superimposed current, the model only considers the near-

bottom part of the current profile, so a depth-invariant mean shear stress is

assumed. Thus, an analytical solution of current velocity is possible with the

knowledge of a no-slip condition at z = z0 and a reference current velocity

at a reference level. In their model, the spatial-variation function g(z) of

νT (z, t) has an analytical four-layer structure, which can rigorously account

for a variety of wave and current conditions, and f(t) is approximated by a

Fourier series. With the introduction of a new temporal variable, i.e.

τ =

∫

f(t)dt (A.6)

the governing equation is first transformed into the τ -space, which can be

solved analytically in a harmonic-by-harmonic manner. The analytical solu-

tion is then transformed back to t-space for matching the boundary condi-

tions and also determining the model parameters through a closure, which

requires the model predicts the bottom shear stress

u∗wc|f(t)| =

√

|
τb(t)

ρ
| =

√

|νT
∂u

∂z

∣

∣

∣

∣

z=0

| (A.7)

The back-transformation of analytical solution to t-space and the closure is

conducted numerically, so the model is semi-analytical. By benchmarking

against a variety of OWT experiments, including asymmetric or skewed os-

cillatory flows with or without a superimposed current, it is demonstrated
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that the model can accurately predict the bottom shear stress, the Reynolds-

averaged oscillatory velocity in the very near-bed region, the TI-streaming

of skewed and asymmetric oscillatory flows and the current velocity profile

under wave-current flows. A key advantage of this model is that it can sepa-

rately predict the TI-streaming ūs and the basic current ūc, which allows the

following decomposition of the mean bottom shear stress over a wave period

τ̄b
ρ

= [νT (z, t)
∂ũ

∂z
+ ν̄T (z)

∂ūs

∂z
]|z=z0 + ν̄T (z)

∂ūc

∂z
|z=z0 (A.8)

where ũ is the wave velocity, τ̄b is the mean bottom shear stress and ν̄T is

the mean turbulent eddy viscosity. The first two terms on the right-hand

side are the mean bottom shear stress associated with the time-varying flow

and the TI-streaming, respectively, and the last term is associated with a

superimposed current. Yuan and Madsen (2015) shows that the first two

terms will always cancel each other, so the mean bottom shear stress is solely

due to the superimposed current.

In this study we are interested in the model prediction of the time-varying

part of bottom shear stress, which can be approximated with the leading

three harmonics, i.e. Eq. (12). The magnitudes of each harmonics can be

further expressed as friction factors, i.e. Eq. (13). Model predictions suggest

that the time-varying bottom shear stress can be obtained without consid-

ering a mean return current balancing the TA-streaming, so it can be shown

that the friction factors and the phase leads of bottom shear stress are func-

tions of three non-dimensional parameters, i.e. X = Ab/kb (relative rough-

ness), α and the two parameters (α and ϕ∞,2) describing the second-harmonic

free-stream velocity in Eq. (1). Therefore, it is possible to approximate the

model predictions of f1 to f3 and ϕτ1 to ϕτ3 in Eq. (13) with explicit formulas
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of these three parameters. Since the model assumes a flat bed, we only con-

sider the predictions for 10 < X < 105. Based on a sensitivity analysis, the

first and the third harmonics of bottom shear stress are weakly affected by

the second-harmonic free-stream velocity. Therefore, we express f1, f3, ϕτ1

and ϕτ3 as single-variable functions of X and obtain the following explicit

formulas from fitting the exact model predictions

f1 = exp
[

5.670X−0.1045 − 7.475
]

(A.9)

f3 = exp
[

5.447X−0.1063 − 9.178
]

(A.10)

ϕτ1[rad] = 0.8095X−0.1198+0.0228 (A.11)

ϕτ3[rad] = 1.565X−0.1588+0.2846 (A.12)

The effect of skewness and asymmetry on bottom shear stress is primarily

reflected by the second-harmonic bottom shear stress. A sensitivity analysis

suggests that the influence of α on the second-harmonic friction factor f2 is

immaterial, so the following explicit formula for f2 is obtained

f2 = exp
[

5.835X−0.1036 − 7.343 + ln(0.15ϕ∞2
1.584 + 1)

]

(A.13)

For the second-harmonic phase, both α and ϕ∞,2 are included in the explicit

formula

ϕτ2[rad] = AX−0.1031+B (A.14)

where

A = (0.22α+ 0.11)ϕ∞2
2 + (−0.96α + 0.06)ϕ∞2 + 0.64α + 0.71 (A.15)
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and

B = (0.26α− 0.33)ϕ∞2
2 + (−0.21α + 0.51)ϕ∞2 − 0.13α− 0.06 (A.16)

In all the explicit formulas ϕ∞,2 is in radians. All these explicit formulas

are valid for 10 < X < 105, 0 < α < 0.25 and 0 < ϕ∞,2 < π/2, and they

deviate from the actual model predictions by less than 5% for the friction

factors and 2◦ for the phase leads, which are smaller than the inaccuracy due

to neglecting the mean flow in calculation.
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