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Abstract

A high-quality experimental study including a large number of tests which

correspond to full-scale coastal boundary layer flows is conducted using an

oscillating water tunnel for flow generations and a Particle Image Velocime-

try system for velocity measurements. Tests are performed for sinusoidal,

Stokes and forward-leaning waves over three fixed bottom roughness config-

urations, i.e. smooth, “sandpaper” and ceramic-marble bottoms. The exper-

imental results suggest that the logarithmic profile can accurately represent

the boundary layer flows in the very near-bottom region, so the log-profile

fitting analysis can give highly accurate determinations of the theoretical

bottom location and the bottom roughness. The first-harmonic velocities of

both sinusoidal and nonlinear waves, as well as the second-harmonic veloc-

ities of nonlinear waves, exhibit similar patterns of vertical variation. Two

dimensionless characteristic boundary layer thicknesses, the elevation of 1%

velocity deficit and the elevation of maximum amplitude, are found to have

power-law dependencies on the relative roughness for rough bottom tests. A

weak boundary layer streaming embedded in nonlinear waves and a small

Preprint submitted to Coastal Engineering March 25, 2014



but meaningful third-harmonic velocity embedded in sinusoidal waves are

observed. They can be only explained by the effect of a time-varying turbu-

lent eddy viscosity. The measured period-averaged vertical velocities suggest

the presence of Prandtl’s secondary flows of the second kind in the test chan-

nel. Among the three methods to infer bottom shear stress from velocity

measurements, the Reynolds stress method underestimates shear stress due

to missed turbulent eddies, and the momentum integral method also signif-

icantly underestimates bottom shear stress for rough bottom tests due to

secondary flows, so only the log-profile fitting method is considered to yield

the correct estimate. The obtained bottom shear stresses are analyzed to

give the maximum and the first three harmonics, and the results are used to

validate some existing theoretical models.

Keywords: Turbulent oscillatory boundary layer, Oscillatory Water

Tunnel, Bottom shear stress, Laboratory experiment

1. Introduction

In coastal regions, surface waves generate turbulent near-bottom flows

which provide the driving forces for sediment transport. Following linear

wave theory, wave boundary layers are usually approximated by bottom-

parallel oscillations which are uniform in the wave direction, i.e. turbulent

oscillatory boundary layers. The early analytical studies assumed a time-

invariant turbulent eddy viscosity to solve the boundary layer equation, e.g.

Kajiura (1968), Grant (1977) and Brevik (1981) for sinusoidal wave boundary

layers, and Grant and Madsen (1979), Fredsøe (1984) and Sleath (1991) for

combined wave-current boundary layers. Neglecting the temporal variation of
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turbulent eddy viscosity is against the unsteady nature of oscillatory flows,

so among others, Trowbridge and Madsen (1984a,b), Lavelle and Mofjeld

(1983) and Gonzalez-Rodriguez and Madsen (2011) developed more elaborate

models based on a time-varying turbulent eddy viscosity. Besides analytical

models, numerical models based on various turbulent closure schemes also

have been developed (e.g. Davies et al., 1988; Holmedal and Myrhaug, 2006;

Scandura, 2007).

The development of theoretical models relies heavily on experimental

studies. Dimensional analysis (e.g. Sleath, 1987) suggests that turbulent

oscillatory boundary layers are controlled by two dimensionless parameters:

the amplitude Reynolds number Re=AbmUbm/ν and the relative roughness

Abm/kb, where Ubm is the near-bottom wave orbital velocity amplitude, Abm

is the near-bottom excursion amplitude, ν is the molecular kinematic viscos-

ity of the fluid and kb is the bottom roughness. For a surface wave which can

induce noticeable amounts of sediment transport, Abm and Ubm can reach the

orders of 1m and 1m/s, respectively, so the corresponding Re and Abm/kb can

be up to O(106) and O(103), respectively. Many previous experimental stud-

ies are performed in small-scale wave flumes (e.g. Kemp and Simons, 1982,

1983; Cox et al., 1996; Dixen et al., 2008) or shaking platforms (e.g. Krstic

and Fernando, 2001; Hay et al., 2012a,b). However, the physical limitations

of these facilities make it impossible to achieve the high values of Re and

Abm/kb under prototype flow conditions. Thus, most full-scale experimental

studies are conducted in another type of facility: oscillating water tunnels

(OWT). These facilities are usually U-shaped tunnels. A piston located at

one end of the tunnel produces oscillatory motions in the entire tunnel. As
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pointed out by many researchers (e.g. van der Werf et al., 2009), OWT flows

are approximations to those under progressive waves, since they are uniform

along the longitudinal direction, i.e. ∂u/∂x = 0. Thus, some boundary

layer processes, e.g. the boundary layer streaming suggested by Longuet-

Higgins (1953), are not present. Nevertheless, this drawback is offset by

the OWT’s ability to obtain highly-accurate experimental data at prototype

scales. For simplicity, the oscillatory OWT flows will be referred to as waves

hereafter. Jonsson (1963) followed by Jonsson and Carlsen (1976) conducted

two sinusoidal-wave tests over artificially rippled bottoms in the very first

OWT described by Lundgren and Sorensen (1957). After that, Sleath (1987)

studied the characteristics of turbulence in oscillatory boundary layers in a

relatively smaller OWT. Jensen et al. (1989) performed similar experiments

to Sleath (1987) in a higher range of Re. These three studies only considered

sinusoidal oscillatory flows, however, the nonlinearity of coastal waves makes

the near-bottom flow skewed (peaked crest and flat trough) and asymmetric

(forward-leaning crest). Very few experimental studies have been performed

for such flow conditions. Ribberink and Al-Salem (1995) reported limited

measurements of skewed oscillatory boundary layer flows as by-products of

their experimental study of skewness-induced net sediment transport. Very

recently, van der A et al. (2011) systematically studied asymmetric oscillatory

boundary layers over rough bottoms.

Previous OWT studies provide valuable experimental results for under-

standing turbulent oscillatory boundary layers, but the work is still not fin-

ished. A significant problem is the experimental determination of bottom

shear stress. As will be introduced in Section 5, bottom shear stress is
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generally inferred from velocity measurements via three methods: the log-

profile fitting method, the momentum integral method and the Reynolds

stress method. Ideally, they should give identical estimates. However, Sleath

(1987) showed that the observed Reynolds stress was significantly smaller

than the shear stress given by the momentum integral method. A less signif-

icant but still noticeable discrepancy was observed by van der A et al. (2011).

They also showed that the momentum integral method gave bottom shear

stresses which are 30%∼50% smaller than those from the log-profile fitting

method. Similar discrepancies are observed in experimental studies using

other types of facilities, such as the shaking platform experiments by Hay

et al. (2012b). Thus, the three methods generally give bottom shear stress

in the sequence: Reynolds stress<momentum integral<log-profile fitting. It

is unknown which method yields the correct estimate, so researchers face

the problem of having to choose the “right” measurements for model valida-

tions, e.g. Abreu et al. (2013) chose the results from the momentum integral

method which is argued invalid by van der A et al. (2011). Another unset-

tled issue is the quantification of bottom roughness which is an important

input parameter for most theoretical models. The seminal work by Nikuradse

(1932, 1933) provides a quantitative understanding of bottom roughness for

steady turbulent boundary layers, but whether his findings are applicable for

unsteady flows must be confirmed through a systematic experimental study

which is comparable to Nikuradse’s work. Previous OWT studies did not

pay much attention to bottom roughness, so a detailed experimental effort

devoted to clarification of this issue is desirable.

In this study, we conduct full-scale experiments using an newly-built
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OWT (see Yuan et al. (2012) for a detailed description) for flow generation

and a state-of-the-art Particle Image Velocimetry (PIV) system for veloc-

ity measurements. Tests are performed for three types of periodic oscillatory

flows over three different fixed bottom roughness configurations. Several flow

conditions are covered for each combination of flow type and bottom rough-

ness configuration, so the number of tests are sufficiently large to ensure the

reliability of the obtained conclusions. The experimental setup is introduced

in Section 2. The experimental determination of bottom roughness will be

discussed in Section 3. Some characteristics of turbulent oscillatory bound-

ary layers will be presented in Section 4. The experimental determination of

bottom shear stress will be addressed in Section 5.

2. Experimental setup

2.1. Experimental facility

The experimental facility is a newly-built OWT, named theWave-Current-

Sediment facility (WCS), in the Hydraulic Engineering Laboratory of the De-

partment of Civil and Environmental Engineering at the National University

of Singapore, as shown in Fig. 1. The main part is a 10m-long, 50cm-deep

and 40cm-wide horizontal test channel with glass sidewalls and acrylic lids

along its entire length. Below the 50cm working depth, a 20cm-deep trough

for holding sediments is currently fitted with wooden false bottom blocks

which can serve as the foundation to mount bottom roughness plates. The

transparency of sidewalls and lids makes it very convenient to set up any

experimental apparatus which requires introducing light or laser beams into

the channel. Two stainless steel vertical cylindrical risers of 1m-diameter

6



are connected to the test channel through honeycomb filters to make in- and

outflows uniform. One riser is open to the atmosphere and the other contains

a programmable, hydraulically actuated piston which can generate a variety

of periodic or irregular oscillations. The maximum excursion amplitude of

the piston is 500mm which corresponds to roughly 2m maximum excursion

amplitude of flows in the 40cm-by-50cm test section. Limited by the 40kN

maximum driving force of the piston, the maximum amplitudes of piston ve-

locity and acceleration are 500mm/s and 500mm/s2 for periods 2s<T<12s, so

the corresponding maximum amplitudes of flow velocity and acceleration in

the test section are about 2m/s and 2m/s2. The entire structure is supported

by a pivot and a hydraulic jack, so it can be tilted (up to 1/20) to include the

bottom slope effect into our physical modeling. A current generation system

has been built to superimpose a current on oscillatory flows. The core part

is a Börger EL1550 Rotary Lobe pump placed in the basement underneath

the WCS. It can produce a current of up to 60cm/s average velocity in the

test section. One significant feature of this pump is that it can maintain a

steady discharge even when the pressure difference across the pump changes

in time, e.g. due to wave generation. Moreover, the direction of the current

can be easily reversed by reversing the pump’s rotation. A sediment trap

tank is inserted in the pipe system to capture suspended sediments when

performing experiments with significant suspended sediment transport. The

current enters or leaves the main test section through flexible telescoping

pipe connections, allowing tilting the entire facility with the current genera-

tion system operating. With all these features, the facility is able to model

most important physical processes of oscillatory boundary layers in coastal
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regions.

2.2. PIV measurements

Velocity measurements are obtained using a 2-dimensional PIV system

supplied by the TSI Corporation. The flow is seeded with nearly neutrally-

buoyant silver-coated seeding particles with diameter of 10µm. To illuminate

the near-bottom flow field, a double-pulsed YAG 135-15 Litron Nano L laser

produces a thin laser sheet which is introduced into the test channel verti-

cally downward through the transparent lid. Since the primary flow is in the

longitudinal direction, the laser sheet is carefully aligned with the lateral cen-

ter line of the test channel to remove sidewall effects. It is also located close

to the longitudinal center of the test channel, so the end effect is reduced

to a minimum. For each sampling, two images of the illuminated area are

captured using a high-speed Powerview 4M Plus 2000-by-2000 pixels camera

with a very short time interval ∆t. The firing of laser and the image cap-

ture by the camera is controlled and synchronized by a 610035 LaserPulse

Synchronizer. For most tests in this study, the camera is about 70cm from

the target flow field and uses a lens with fixed 105mm focal length, which

gives a resolution parameter λ=50µm/pixel. This corresponds to a roughly

10cm-by-10cm captured area. For some tests with over 10cm thick boundary

layers, another lens with 50mm focal length is used to double the size of the

captured area. By performing cross-correlation analysis of the image pair of a

single sampling using the Insight 4G software supported by TSI, the displace-

ments and hence the velocities of seeding particles are obtained. Insight 4G

first divides the digital image into rectangular interrogation grids, and then

performs cross-correlation analysis for each grid to get velocities. Since the
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horizontal component of velocity is the dominant one, the interrogation grid

is stretched to 128 (horizontal)-by-16 (vertical) pixels. The analysis gives

velocity vectors in each quadrant of an interrogation grid, so the spacing of

the velocity measurements is roughly 3.2mm-by-0.4mm, which is fine enough

to reveal most important details of turbulent oscillatory boundary layers.

The time interval ∆t between the image pair of a single PIV measurement is

determined by requiring that the maximum Reynolds-average flow velocity

Umax gives a particle displacement less than 16 pixels, i.e. ∆t=16 · λ/Umax.

The PIV sampling rate is 5.12Hz for all tests.

To increase the PIV’s accuracy, the image background brightness is re-

moved from all images, and the grids containing solid bottom elements are

also masked off. Thus, only 1∼3% of the obtained velocity vectors are er-

roneous due to imperfect flow seeding or analysis error. Since the erroneous

vectors are quite few, they are simply replaced by their local mean vectors

based on its neighboring 8 vectors. The obtained velocity fields over N wave

periods are phase-averaged into a single period T :

ψ̂(x, z, t) =
1

N

N
∑

n=1

ψ(x, z, t + (n− 1)T ), 0 < t < T (1)

where ψ is either the horizontal or vertical component of flow velocity (u, w),

t is the time, and (x, z) are the horizontal and vertical coordinates. If the

scale of individual bottom roughness is much smaller than the scale of the

interrogation grid, the measurements at the same vertical level but differ-

ent longitudinal positions are effectively homogeneous. Therefore, we can

perform a spatial average to consolidate the 2D velocity field which has M

9



columns into a vertical velocity profile:

< ψ(z, t) >=
1

M

M
∑

m=1

ψ(xm, z, t) (2)

The Reynolds-averaged quantities are obtained by performing both spatial

and phase average:

< ψ̂ > (z, t) =

1

MN

M
∑

m=1

N
∑

n=1

ψ(xm, z, t+ (n− 1)T ), 0 < t < T
(3)

The associated turbulent fluctuation is then given by:

ψ′(x, z, t) = ψ(x, z, t)− < ψ̂ > (z, t) (4)

The Reynolds stress normalized by fluid density is obtained through the

double average:

< −u′w′ > (z, t) =
1

MN

M
∑

m=1

N
∑

n=1

u′w′ (5)

It should be noticed that the turbulent fluctuation, as defined by Eq. (4), will

include fluctuations due to spatial inhomogeneity. Therefore, the Reynolds

stress given by Eq. (5) is an equivalent Reynolds stress which contains the

correlation of the spatial fluctuations of u and w. This is essentially the

form drag due to individual roughness elements. In the following part of this

paper, unless otherwise indicated, we will for simplicity use ψ(z, t) to denote

the double-averaged quantities.

2.3. Bottom conditions

In this study, three bottom conditions, a smooth bottom and two rough

bottoms, are included. The smooth bottom is formed by 10 pieces of 8mm-

thick, 40cm-wide and 1m-long flat aluminum plates mounted on the wooden
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false bottom and painted black to reduce laser reflection effects. For the two

rough bottoms, bottom roughness elements are fixed to exclude the movable

bottom effect. One rough bottom, as shown in Fig. 2a, is built by gluing

3MTM 710 Safety-WalkTM Slip-Resistant Coarse tapes onto the aluminum

plates. These rough tapes consist of large abrasive particles bonded by a

tough, durable polymer to a plastic film, so they to some extent resemble

sandpaper. For simplicity, this bottom will be referred to as the “sand-

paper” bottom hereafter. To estimate the horizontal and vertical scales of

bottom roughness elements, Lx and D, a side-view image of an 18cm-long cut

through the “sandpaper” was taken. A small part of this image is shown in

Fig. 2c. By searching for the border between the gray image background and

the black bottom, a profile which shows the waviness of the bottom surface is

obtained. The wave-length spectrum of this bottom profile suggests that the

average wave length Lr is 2.6mm and the root-mean-square wave height Hr is

0.62mm, so the undulation of the rough surface is relatively mild. The other

rough bottom is the ceramic-marble covered bottom shown in Fig. 2(b,d).

A mono-layer of 12.5mm-diameter ceramic marbles are carefully placed and

glued onto the aluminum plates, so this bottom has a much larger rough-

ness than the “sandpaper” bottom. Using such uniform roughness elements

avoids the randomness of the “sandpaper” bottom, so the bottom condition

is well-defined, e.g. providing an origin for a vertical coordinate as the top of

the ceramic marbles, and the experimental results will be ideally suited for

scientific understanding of the fluid-solid interactions.
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2.4. Flow conditions

Three periodic wave shapes, sinusoidal, Stokes and forward-leaning waves,

are included in this study. The latter two are the sum of two harmonics:

u∞(t) = U∞,1 cos(ωt) +
U∞,1

4
cos(2ωt+ ϕ∞,2) (6)

The second-harmonic phase ϕ∞,2 is 0
◦ for Stokes waves and 90◦ for forward-

leaning waves. As shown in Fig. 3, they represent the skewness and the asym-

metry of near-bottom flows under nonlinear waves. For each wave shape, a

variety of wave amplitudes and two wave periods (6.25s and 12.5s) are con-

sidered, as summarized in Table 1. Here the amplitudes are controlled by

the first-harmonic displacement amplitude of the piston a1, so the measured

U∞,1 may deviate slightly (1∼5%) from the target values listed in the fourth

column of Table 1 which are actually the cross-section averaged U∞,1 based

on a1 (first-harmonic amplitude of piston displacement). The PIV sampling

frequency is 5.12Hz for all tests, so the number of samplings per period is

32 for the short-period (6.25s) tests and 64 for the long-period (12.5s) tests.

Preliminary tests were performed with increasing numbers of wave periods,

i.e. 16, 32 and 64. Experimental results suggest that there is virtually no

difference between the Reynolds-averaged measurements (Eq. (3) and (5))

given by the 32-period and 64-period tests, so all tests are sampled for 32

wave periods.

To test whether the WCS can precisely generate a specified oscillatory

motion, a preliminary Stokes-wave test ST400a over the smooth wooden

false bottom was conducted. The piston displacement was recorded, and

two PIV measurements located symmetrically on both sides of the lateral
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centerline, i.e. half-width distance (20cm) apart, were performed. Based

on the conservation of total volume, the measured piston displacements can

be used to give the cross-section average velocity Upiston which should be

identical to the target cross-section average velocity Utarget based on the

intended piston displacements. Since the smooth turbulent boundary layer

is very thin, these two velocities should be very close to the two measured

free-stream velocities UPIV,1 and UPIV,2. The comparisons are based on the

amplitudes of the first three harmonics, U∞,1, U∞,2 and U∞,3, and the second-

harmonic phase lead ϕ∞,2, as shown in Table 2. U∞,1 and U∞,2 of Upiston

deviate from those of Utarget by only 0.4cm/s and 0.02cm/s, respectively.

Meanwhile, ϕ∞,2 of Upiston deviates from the target value by only about 5◦.

If necessary, this slight error in phase can be corrected by changing the phase

of the input signal, i.e. use ϕ∞,2=5.42◦. The measured U∞,3 of Upiston, as

well as other unintended higher order harmonics, is negligibly small. Thus,

Upiston agrees very well with Utarget, indicating that the system can accurately

produce a specified piston motion. The difference between Upiston, UPIV,1 and

UPIV,2 is also immaterial. The relative discrepancies among amplitudes are of

O(1%), and the discrepancy among second-harmonic phases ϕ∞,2 is less than

1◦. These results show that the flow is laterally uniform, responds accurately

to the target piston movement and demonstrate that the WCS has excellent

wave generation capabilities.

A two-part scheme, “Flow Bottom”, is used to identify tests. The first

part indicates the flow conditions. For oscillatory flows, it is chosen from the

test ID listed in Table 1. Some pure current tests were also performed in this

study. Current generation is specified by the pump’s working frequencies f ,
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and the cross-section average velocity ū can be roughly estimated as:

ū[cm/s] = f [Hz], 13Hz < f < 50Hz (7)

Thus, currents are simply named in the form of “C” plus a number indicating

f , e.g. “C13” is a pure current test with a 13Hz pump frequency. The second

part of the test IDs is the bottom identifier which is chosen from “sm” (the

smooth bottom), “sa” (the “sandpaper” bottom) and “ce” (the ceramic-

marble bottom). For example, the test ST400a ce is the Stokes-wave test

given by the fifth row in Table 1 over the ceramic-marble bottom and test

C40 sa denotes a test with a pure current of ∼40cm/s mean velocity over the

“sandpaper” bottom.

3. Theoretical bottom location and bottom roughness

Steady turbulent boundary layers follow the law of the wall in the near-

bottom region:

u =
u∗
κ

ln(
z

z0
) (8)

where z0 is a roughness scale, u∗ is the shear velocity,
√

τb/ρ, with τb being

the bottom shear stress, and κ is the von Kármán constant which is found to

vary between 0.38∼0.42 in various studies (we simply use 0.40 hereafter). A

bottom roughness is customarily defined as kb=30z0. For oscillatory turbu-

lent boundary layers, many experimental studies, e.g. Jensen et al. (1989),

show that the law of the wall is also applicable. Since the vertical coordi-

nate z is a variable in Eq. (8), the theoretical bottom location z=0 must be

experimentally determined together with kb.
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3.1. Theoretical bottom location

3.1.1. Smooth bottom tests

As shown in Fig. 4a, where the laser sheet hits the smooth bottom surface,

the strong laser reflection makes the local brightness exceed the maximum

acceptable brightness of the PIV camera, which is indicated by the pink

layer. The intensity of the laser sheet decays towards its edges, producing a

bell-shaped distribution of brightness across the pink layer. For the smooth

bottom z=0 is where the brightness reaches its maximum, and consequently

can be obtained by fitting a normal distribution:

B(X,Z) =
1

σ(X)
√
2π
e
−

(Z−Z0(X))2

2σ(X)2 (9)

where B is the PIV image’s brightness (0 to 4095), (X,Z) are the horizontal

and vertical image coordinates (in pixels) with the origin set at the lower-left

corner of the image, σ is the standard deviation of the normal distribution

and Z0 is the vertical coordinate of the distribution’s peak. To remove image

noises, every 50 adjacent single-pixel profiles are averaged to give a relatively

smooth 50-pixel-averaged brightness profile, as shown in Fig. 5. The fitting is

based on data points within 2σ from the peak of the fitted distribution, and

the points inside the flat region (B=4095) around the peak are excluded since

they are not actual measurements. The fitted curve in Fig. 5 nicely passes

through the selected data points and the obtained Z0 is roughly located at

the center of the flat region with a mere 0.2-pixel 95%-confidence interval.

As shown in Fig. 6a, the obtained bottom profile Z0(X) can be reasonably

approximated by a straight line with a roughly 1/900 slope due to imperfect

camera alignment. We simply neglect this very small slope and take the
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average over the horizontal span as the bottom surface level. The maximum

introduced error which occurs at both ends will be only 1 pixel (0.05mm).

Another determination error is due to the deflection of the glass sidewalls

under oscillating water pressure, which affects the refraction of laser beams

as they travel across the sidewalls and therefore makes the image of the

bottom oscillate. Fig. 6b shows the period variation of Z0 obtained at a

fixed horizontal location X=1025 for test SP400a sm. This variation can

be approximated by a sinusoidal temporal variation with roughly 1-pixel

amplitude. Since test SP400a sm is very close to the design limit of the

WCS, the determination error due to sidewall deflection should be less than

1 pixel. The final z=0 is obtained by averaging the bottom profiles over a

wave period and over the horizontal span, so the accumulated error is no

more than 2 pixels (0.1mm). Thus, the theoretical bottom location for the

smooth bottom is determined with extreme accuracy.

3.1.2. Rough bottom tests

For the two rough bottoms, a temporary vertical coordinate y is defined

as follows. For the ceramic-marble bottom, y=0 is the mean crest level

visually determined from PIV images by drawing a horizontal line across all

observed crests, as indicated by the dashed yellow line in Fig. 4b. For the

“sandpaper” bottom, such a visual determination of the crest level is not

accurate enough, so the methodology to give Z0(X) for the smooth bottom

is applied to get a “bottom profile”, as indicated by the black wavy line

in Fig. 4c. This “bottom profile” has a representative wave height 0.34mm

and a representative wave length (2.1mm) which are smaller than the values

obtained in Section 2.3. The reason is that the bottom regions of elements are
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blocked by the elements in front of them, so only top regions are detected.

The level of the “top” of the “sandpaper” bottom, y=0, is defined as the

mean level inferred from laser measurements plus half of Hr=0.34mm, which

gives the yellow dashed line in Fig. 4c. The vertical coordinate z is related

to y by z=y+∆, where ∆ is a zero offset. Thus, the determination of z=0 is

equivalent to the determination of ∆. Different values of ∆ are tried in the

log-profile fitting to determine an optimal value which gives the coefficient

of determination R2 closest to unity in the log-profile fitting. The Reynolds-

averaged velocity profiles of pure current tests and the first-harmonic velocity

amplitude profiles of sinusoidal wave tests are used for this analysis.

Since measurements in the immediate vicinity of the bottom are invalid

due to locally large amount of bad PIV measurements, a lower limit for data

selection requires that the percentage of good vectors at a certain vertical

level must exceed 75%. Usually, it gives a lower limit between y=0.5mm and

y=1.5mm. At these levels, measurements suggest that the local streamwise

variation of velocity is less than 2% of the mean value, so the effect of in-

dividual roughness elements is insignificant. To avoid using data within the

viscous sublayer or buffer layer, the thickness of buffer layer (Jiménez, 2004)

is applied as another lower limit:

y +∆ >
100ν

u∗
(10)

The overall lower limit for data selection is the higher of Eq. (10) and the

75%-good-vector threshold. For turbulent sinusoidal wave boundary layers,

Grant (1977) shows that the log-profile approximation is only good in the

region where the normalized vertical coordinate ξ = z/l is very small, where
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l is a characteristic boundary layer length scale defined as:

l =
κu∗w
ω

(11)

with u∗w being the maximum wave shear velocity, which is approximately

obtained from fitting the first-harmonic velocity amplitude profile. To have

enough (5∼10) data points, ξ=0.15 is chosen as the upper limit for data

selection in this study. For pure current boundary layers, the logarithmic

approximation is valid for small values of (y +∆)/δc, where δc (always over

10cm in this study) is the boundary layer thickness. Thus, we simply take

y=1cm as the upper limit for data selection, since this ensures that (y+∆)/δc

is less than 0.1 and still can give 20-25 data points which is sufficient for log-

profile fitting.

Fig. 7a shows the variation of 1-R2 as a function of ∆ for log-profile fitting

of tests over the ceramic-marble bottom. Some curves are not continuous

because the number of selected data points change with ∆, but this does

not affect the general variation of the curves. All the six tests have quite

well-defined minimum values of 1-R2 of O(10−5) to O(10−4). The obtained

values of optimal ∆ are shown in the top half of Table 3. The average

value based on the four wave tests, 3.95mm, is in excellent agreement with

the one obtained from the two current tests, 4.05mm. Given the widely-

accepted validity of using log-profile fitting to get ∆ for steady turbulent

flows, this agreement demonstrates that the same analysis based on the first-

harmonic velocity amplitude profiles is also valid for oscillatory flows. In

addition, this indicates that the data selection rules, especially the upper

limit for wave tests, ξmax=0.15, are appropriate. The average ∆ based on

all the six tests is 4.0mm, which is equal to 32% (1/3) of the diameter of
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ceramic marbles (D=12.5mm). This is in good agreement with the ∆=0.35D

reported by Bayazit (1976) who studied steady turbulent boundary layers in

an open flume using uniform fixed hemispheres as bottom roughness. The

standard deviation among obtained ∆ is 0.4mm, which is only 10% of the

mean value, so the determination of the theoretical bottom location for the

ceramic-marble bottom is very accurate.

Fig. 7b shows the variation of 1-R2 as a function of ∆ for the “sandpa-

per” bottom. Test SP200 sa has the thinnest boundary layer, so only 5 data

points meet the rules for data selection. Thus, this test suffers the largest

determination error for ∆. Test C13 sa has a roughly 10mm lower limit for

data selection (Eq. (10)), so the somewhat arbitrarily chosen upper limit

(z<10mm) must be relaxed to give a sufficient number of data points. How-

ever, these data points have large values of y (>10mm), which makes 1-R2

very insensitive to adding a small ∆. For these reasons, both tests do not

give a minimum within the acceptable range of ∆, i.e. between 0∼1mm, and

are therefore not included in the statistics for ∆. It should be noted that

these two tests are still included in later analyses using the ∆ value obtained

from other tests. To have at least two current tests, C13 sa is replaced by

another test, C45 sa. As can be obtained from the bottom half of Table 3,

the average ∆ is 0.60mm for the three wave tests and 0.61mm for the two

current tests, so the wave tests and the current tests are controlled by the

same ∆, in agreement with our finding for the ceramic-marble bottom. The

five tests give an overall average ∆=0.60mm and a standard deviation of only

0.1mm, so the experimental determination is very accurate.

19



3.2. Bottom roughness

Log-profile fitting is re-performed with the determined z=0 to obtain

experimental values of bottom roughness.

3.2.1. kb of the smooth bottom

The near-bottom parts of measured velocity profiles and fitted logarithmic

profiles of two typical smooth bottom tests, a current test C40 sm and a

wave test SP400a sm, are shown in Fig. 8. For easy comparisons, u and z

are normalized as follows:

φ =
u

u∗
, η =

z

ν/u∗
(12)

The selected data points all nicely collapse onto the fitted straight lines, which

confirms the existence of a near-bottom logarithmic layer. The measured

current velocity profiles of test C40 sm, Fig. 8a, begins to deviate from the

fitted straight lines at about η=100, which proves the existence of the buffer

layer and the correctness of using Eq. (10) as one of the lower limits for data

selection. Since the wave boundary layer is very thin, only 5 points can be

selected for the wave test SP400a sm shown in Fig. 8b. Nevertheless, a few

points above the upper limit (the upper red cross) still reasonably fall on the

fitted logarithmic profiles, indicating the upper limit is conservatively defined.

The results of the log-profile fittings are shown in Table 4. The confidence

level for u∗ is given by a normalized 95%-confidence interval ∆u∗/u∗, and the

confidence level for kb is indicated by a 95%-confident factor r∆k≥1, i.e. the

true kb is 95%-likely between kb/r∆k and kb · r∆k. The values of 1-R2 are of

O(10−5) to O(10−4), suggesting very good properties of log-profile fittings.
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Generally speaking, ∆u∗/u∗ is of the order 1%, and r∆k is less than 1.1.

Therefore, both kb and u∗ are obtained with excellent accuracy.

For steady smooth turbulent boundary layer flows, the classic experimen-

tal study of Nikuradse (1932) suggests that the near-bottom logarithmic layer

is controlled by an effective bottom roughness kb,p:

kb,p =
3.3ν

u∗
(13)

With the fitted values of u∗, this equation gives the predictions for kb,p shown

in Table 4. For the current tests, the ratio kb,p/kb has a 0.96 average and a

0.07 standard deviation, which demonstrates the validity of Eq. (13) and also

verifies the accuracy of our measurements. For the wave tests, the values of

kb,p/kb, 0.83±0.04, are remarkably consistent. Given the fact that the 95%-

confidence factor of kb can be up to 1.37, and only three tests are available,

this consistency may be just a coincidence. In fact, if adding one or two

data points outside the ranges of our data selection limits, this ratio can

vary between 0.6 and 1.0. Nevertheless, the fitted roughness is always larger

than the predicted roughness. According to Grant (1977), the u∗ given by

fitting the amplitude profile of first-harmonic velocity is approximately the

maximum shear velocity related to the maximum bottom shear stress. It

may make more sense to predict kb,p from Eq. (13) using a period-averaged

u∗ which is smaller than the maximum shear velocity. For example:

ū∗ =
1

T

∫ T

0

√

|τb(t)
ρ

|dt (14)

If the bottom shear stress is assumed to follow a sinusoidal temporal varia-

tion, ū∗ given by Eq. (14) is 76% of the maximum shear velocity, so using
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it in Eq. (13) nicely removes the differences between kb,p and kb, resulting

in kb,p/kb=1.09±0.05. Given the limited number of tests and the relatively

large experimental uncertainty, this study cannot conclusively support the

correctness of adopting Eq. (14), as the definition of ū∗ in Eq. (13). Nev-

ertheless, it is reasonable to conclude that a period-averaged shear velocity

ū∗ which is smaller than the maximum u∗ should be used in Nikuradse’s

empirical formula (Eq. (13)) to give the effective bottom roughness for oscil-

latory smooth turbulent boundary layer flows. We tentatively propose the

definition of ū∗ given by Eq. (14), but future experimental investigations are

required to estimate its accuracy.

3.2.2. kb of rough bottoms

Nikuradse’s (1933) rough-pipe experiments show that for rough turbulent

boundary layer flows kb depends on a roughness Reynolds number defined

as:

Re∗ =
kNu∗
ν

(15)

where kN is the Nikuradse equivalent sand grain roughness. In the fully

rough turbulent regime where Re∗ is sufficiently high, kb is always equal to

kN , which also defines kN . It should be noted that for bottoms consisting

of densely packed sand-grain-shaped 3D roughness elements of diameter d,

e.g. the inner surface of Nikuradse’s pipes, kN should equal d, but for other

bottom roughness configurations, e.g. ripples, kN may not be equal to the

physical scale of the bottom roughness elements. When Re∗ is less than

70∼100, kb varies with Re∗ in a manner described by:

kb
kN

= 30e−κC(Re∗) (16)
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Nikuradse obtained the experimental determination of C(Re∗) shown in

Fig. 9 from his sand grain roughness experiments. When Re∗ is less than

3∼5, the flow enters the smooth turbulent regime, so C varies linearly with

ln(Re∗). This curve of C(Re∗) is usually assumed applicable for any rough

bottom.

Fig. 10 shows the measured velocity profiles and the fitted logarithmic

profiles for four representative tests (two currents and two waves) over the

two rough bottoms. Similar to the tests over the smooth bottom, the selected

data points tightly follow the fitted logarithmic profiles. The results of the

log-profile fittings are shown in Table 5 and Table 6. The three parame-

ters, 1-R2, ∆u∗/u∗ and r∆k are as “good” as those for smooth bottom tests,

indicating equally good qualities of log-profile fittings. Because of the uncer-

tainty associated with few data points, tests SP200 sa and C13 sa are worse

than the rest, and they are also the two tests that did not give acceptable

values for zero offset ∆.

For the tests over the “sandpaper” bottom shown in Table 5, kb clearly

increases with u∗ from test C13 sa to test SP250 sa. The two strongest tests,

SP400a sa and SP250 sa, have nearly identical kb, 3.60mm and 3.77mm,

indicating that they are in the fully rough turbulent regime. Thus, kN for

the “sandpaper” bottom is taken as the their average, kN=3.69mm. The

roughness Reynolds number Re∗ is calculated for each test with this kN and

the fitted u∗. The corresponding values of C(Re∗) are inferred from kb as

follows:

C = − ln(
kb

30kN
)/κ (17)

The experimental results are compared with those of Nikuradse (1933) in
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Fig. 9. The present study does not cover the very low Re∗ region, but in

the remaining region the general patterns of variation are similar. However,

clear differences between the two studies are observed. First, the begin-

ning of the fully rough turbulent regime is delayed to Re∗ =300∼400 for the

“sandpaper” bottom. Second, the maximum C in the transition regime is

over 12.5, and could be even larger as Re∗ further decreases, so it is consid-

erably larger than the Cmax=9.6 obtained by Nikuradse, which means the

effect of flow conditions on kb is more significant. These results indicate

that the present “sandpaper” bottom does not behave in the same manner

as the rough boundary made of densely-packed sand grains in Nikuradse’s

study. This is possibly because kb also depends on the horizontal geometries

of bottom roughness elements and their spacing, which are not considered

in Eq. (17). As illustrated in Fig. 11a, for the present sandpaper bottom

individual sand grains are loosely placed and coated with a layer of a black

rubberized substance. The vertical scale is roughly 1/4 of the horizontal

scale, as discussed in Section 2.3, so individual elements have much larger lee

space than the densely-packed sand grains in Nikuradse’s study (Fig. 11b).

Therefore, the flow separation can even reach the bottom region of rough-

ness elements, and consequently the area on the lee side with low pressure is

relatively larger and the flow resistance is higher, which is reflected in larger

bottom roughness. This explains why kN for the sandpaper bottom is almost

6 times the estimated physical scale of the bottom roughness Hr=0.62mm.

The rubberized substance coating of the “sandpaper” makes the surface of

bottom roughness elements less angular, which may increase the required Re∗

to get fully developed eddies, so the beginning of fully rough turbulent regime

24



is delayed. The observed discrepancies indicate that the curve of C versus

Re∗ given by Nikuradse is not universally applicable. For bottoms which are

not similar to his packed-sand-grain bottom, C(Re∗) must be re-determined

experimentally.

For the tests over the ceramic-marble bottom shown in Table 6, the fitted

bottom roughness has little variability, i.e. between 15.70mm and 22.95mm,

indicating that all tests are in the fully rough turbulent regime. The average

kN is 20.0mm, and the associated standard deviation is only 3mm or 15%

of the average. With kN=20mm, the lowest value of Re∗ is over 300, which

confirms that all tests are in the fully rough turbulent regime. Since the

ceramic marbles are densely packed and their surfaces are much smoother

than angular real sand grains, it is expected that the kN should be equal

to or smaller than D. However, we obtain kN=20mm which is 1.6 times

the diameter of the ceramic marbles (12.5mm). The reason for obtaining

a larger kN is likely to be the anisotropy of bottom resistance. As shown

in Fig. 12, the bottom is built by triangular packing of uniform ceramic

marbles. If the flow is along a side of the equilateral triangle, e.g. the green

arrow, some streamlines can pass through the valleys formed by two rows of

ceramic marbles without much blockage, so the local flow feels only a very

small resistance. However, if the flow direction is perpendicular to any side of

the equilateral triangles, e.g. the red arrow, all streamlines have to rise up to

climb over the blockage and separate from the surface shortly after the crest,

so the flow feels more resistance, and consequently the bottom roughness

for the second scenario is larger than for the first. For a completely 3D

sand-grain covered bottom, such dependency of bottom roughness on flow
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directions should not exist and kN≈D. Thus, the second scenario, which is

the case for all tests in this study (e.g. photo of marble bottom shown in

Fig. 2b), should have a kN larger than D.

4. Characteristics of periodic turbulent oscillatory boundary layers

4.1. Vertical structures of periodic turbulent oscillatory boundary layers

The measured Reynolds-averaged velocity profiles are Fourier analyzed

to reveal the vertical structures of periodic turbulent oscillatory boundary

layers. Fig. 13 shows the amplitudes (U1, U2, U3) and phases (ϕ1, ϕ2, ϕ3)

of the first three harmonics of a typical sinusoidal wave test SP400a ce (the

strongest sinusoidal wave over the ceramic-marble bottom). The gray zones

indicate the variation in the longitudinal direction with their widths rep-

resenting the standard deviations obtained from the spatial average. The

standard deviations of U1 and ϕ1 are so small that they are not detectable

when shown together with the spatial-averaged values, indicating very good

longitudinal uniformity. Below a well-defined free-stream region (z>130mm),

U1 first increases a little to reach the maximum overshoot which is roughly

5% larger than the U∞,1 at about z=60mm, and then rapidly decreases to-

wards the bottom. ϕ1 starts to deviate from the free-stream value earlier

than U1, i.e. at roughly z=150mm. It slightly decreases until reaching a

negative maximum overshoot (−1◦) at about z=100mm, and then generally

increases towards the bottom. At the lowest levels with valid measurements,

z=5mm, ϕ1 is about 22◦. The second-harmonic velocity should theoreti-

cally not exist due to the symmetry of a sinusoidal variation. The measured

U2 is quite small (1.5∼3.5cm/s) and its vertical variation is quite unstruc-
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tured, so it can be considered as experimental inaccuracy possibly related to

sidewall and lid deflections. Compared to the second-harmonic velocity, the

third-harmonic velocity is clearly meaningful. U3 has a large overshoot below

z=40mm which reaches 6.8cm/s. This cannot be associated with the merely

1∼2cm/s magnitude of U∞,3. Its phase varies smoothly and rapidly by about

360◦ from z=80mm to z=5mm. Such a non-trivial third-harmonic velocity

is also observed in other studies, e.g. Jonsson and Carlsen (1976). Trow-

bridge and Madsen (1984a) analytically showed that it is produced by the

interaction of the time-varying turbulent eddy viscosity and the time-varying

velocity.

Two typical tests in the fully rough turbulent regime, ST400a ce and

FL320a ce, are chosen to represent the Stokes and forward-leaning waves,

respectively. Fig. 14 shows the velocity amplitude and phase profiles of their

first two harmonics. For easy comparison of the two tests, U1 and U2 are

normalized by their free-stream amplitudes, and ϕ∞,2 is subtracted from the

measured ϕ2 to give the second-harmonic phase lead. The first-harmonic

velocities of the two nonlinear waves have vertical structures very similar to

that of the sinusoidal waves. The two ϕ1 at z=5mm are almost the same (21◦

and 22◦), which also agrees with test SP400a ce. Thus, there is no significant

effect of wave nonlinearities (represented by the second-harmonic velocity) on

the vertical structures of the primary first harmonic. The measurements of

second-harmonic velocities appear less smooth than the first-harmonic veloc-

ities possibly due to larger relative experimental error. U2 generally follows

the vertical variations of U1. Judging from the locations of the overshoots,

second harmonics have thinner boundary layers than the first harmonics. Al-
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though the ϕ∞,2 of the two nonlinear waves differ by roughly 90◦, the two

profiles of the second-harmonic phase lead are very similar, except in the

immediate vicinity of the bottom (z<10mm). The third-harmonic velocities

show features similar to those of the sinusoidal waves, so they are not shown

here.

4.2. Boundary layer thickness

A conventional definition of boundary layer thickness is the elevation

where the velocity reaches 99% of the free-stream velocity. Inside turbulent

oscillatory boundary layers both the velocity amplitudes and phases change

with distance above bottom and the primary first harmonic has the thickest

boundary layer. Therefore, a reasonable definition of the wave boundary

layer thickness δw is where the velocity deficit of the complex first-harmonic

velocity U (1) = U1e
iϕ1 reaches 1%:

|U (1)(δw)− U
(1)
∞ |

|U (1)
∞ |

= 1% (18)

Among multiple locations satisfying Eq. (18), the highest one above the

amplitude’s maximum overshoot is taken as δw. To determine such a small 1%

velocity deficit, the velocity measurements must be extremely accurate which

was not achievable in most previous experimental studies. Thus, the elevation

δm of the amplitude’s maximum overshoot is often taken as an alternative

measure of the boundary layer thickness, e.g. Jensen et al. (1989). Based on

the standard deviation of spatial average, our relative error of measuring U1

is generally less than 0.3%, and the error of measuring ϕ1 is less than 0.1◦.

Thus, the relative measurement error for U (1) is:

|ǫ(U
(1))

U (1)
| ≈ |ǫ(U1)

U1
+ iǫ(ϕ1)| ≈ 0.3% (19)
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Since the spatial average is based on 20∼30 adjacent vertical velocity profiles,

the relative 95%-confidence interval of U (1) is less than 0.1%. This is small

enough for determining the 1% velocity deficit, so both δw and δm can be

obtained experimentally in this study.

For turbulent oscillatory boundary layers over rough bottoms, the normal-

ized boundary layer thicknesses, ζw=δw/kN and ζm=δm/kN , are single-valued

functions of Abm/kN . For two nonlinear wave tests, since the dominant first

harmonic is used to determine boundary layer thickness, Abm,1=U∞,1ω
−1 is

taken as the representative Abm. Fig. 15a shows the measurements of ζm

from the present tests together with some measurements from other studies.

For easy comparison, the measurements of smooth bottom tests are provided

with kN being the fitted effective bottom roughness kb. Very good agreement

between the present and previous studies is observed. The overall data set

suggests that ζm increases with Abm/kN , in a manner approximated by a

power law relationship ζm=c1(Abm/kN)
c2. Thus, a power-law fit is applied to

the measurements (excluding smooth bottom tests) to get:

ζm =
δm
kN

= 0.079 · (Abm

kN
)0.81 (20)

This is very close to the power-law relationship given by van der A et al.

(2011) who obtained c1=0.075 and c2=0.82. The smooth bottom tests con-

sistently have larger values of ζm than the prediction of the power-law fit

by 40%±4%, which suggests that the smooth turbulent oscillatory boundary

layers are systematically thicker.

Fig. 15b shows the measured ζw only from the present study, since no

data from other studies are available for comparison. The rough-bottom

measurements can be well represented by a straight line, which gives the
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following power-law relationship:

ζw =
δw
kN

= 0.192 · (Abm

kN
)0.81 (21)

An interesting finding is that ζw and ζm have identical values of c2=0.81.

Thus, the ratio ζw/ζm is nearly constant over the range 20<Abm/kN<1000,

and is equal to the ratio of c1, i.e. 0.192/0.079=2.43. ζw of smooth bot-

tom tests is again larger than the power-law prediction by about 63%±8%.

Therefore, the systematic difference between the smooth and rough oscilla-

tory turbulent boundary layers is even more significant for ζw. As will be

discussed later, this is possibly due to the effect of secondary flows in the

transverse plane.

4.3. Boundary layer streaming

Boundary layer streaming is obtained by averaging the Reynolds-averaged

horizontal velocity over a wave period:

ū(z) =

∫ T

0

u(z, t)dt (22)

For each bottom condition, the obtained boundary layer streaming profiles

of three typical tests representing the three wave conditions are shown in

Fig. 16. Since the two half-periods of a sinusoidal variation are completely

symmetric, no boundary layer streaming should be expected. Thus, the

measured ū(z) of the three sinusoidal wave tests are only of the order mm/s

and rather chaotically distributed around zero. However, for all nonlinear

wave tests, the boundary layer streaming is clearly non-zero. The profiles

have similar patterns of vertical variation, i.e. the streaming is negative in

the near-bottom region, and then becomes positive at higher elevations. The
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magnitude of this near-bottom negative streaming can be up to 1∼3cm/s and

increases with bottom roughness. This is about 1∼3% of the maximum free-

stream velocity, which is in agreement with other observations, e.g. van der

A et al. (2011) for forward-leaning waves and Ribberink and Al-Salem (1995)

for Stokes waves. According to Trowbridge and Madsen (1984b), this nega-

tive streaming is due to the interaction of the first-harmonic turbulent eddy

viscosity and the first-harmonic Reynolds-averaged velocity. To balance the

negative mean volume flux in the near-bottom region, a mean pressure gra-

dient is developed to produce the observed positive streaming in the upper

part of the boundary layer streaming profile.

4.4. Vertical velocity profiles

The Reynolds-averaged vertical velocities are Fourier analyzed to obtain

the first three harmonics and the period-averaged velocity w̄. The amplitudes

of the first three harmonics are of the order mm/s and the phases have

unorganized vertical variations, so the oscillatory vertical velocity is likely

just the residual turbulence after the double average. However, meaningful

period-averaged vertical velocities are observed. For the rough bottom tests

shown in Fig. 17a and b, w̄ is generally negative and can reach up to -9mm/s

for the ceramic-marble bottom tests, but for smooth bottom tests shown in

Fig. 17c, w̄ is generally positive. Thus, w̄ seems to be determined primarily

by bottom conditions.

For steady turbulent flows in rectangular or square ducts, it has been

shown that a Prandtl’s secondary flow of the second kind characterized by

streamwise vorticity is produced by the inhomogeneity of mean turbulence

characteristics near boundaries of the cross section. For steady turbulent
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flows in a smooth conduit with a square cross section, the flow near the

corners is controlled by the bottom and the sidewall boundary layers, while

the flow far away from the corners is only controlled by one boundary layer.

Thus, in each quadrant of the square cross section, such a difference drives a

pair of counter-rotating circulations which are symmetric around the corner’s

bisector and brings fluid toward the corner along the bisector (Hoagland,

1962), as shown in Fig. 18a. If the bottom is rough, the main inhomogeneity is

the difference between the rough bottom boundary layer and smooth sidewall

boundary layer, which produces an upward drift along the sidewalls and hence

a downward drift along the vertical centerline (Fujita et al., 1989), as shown

in Fig. 18b. The secondary flows have no dependency on the primary flow’s

direction, so the same circulation should be expected for oscillating flows in

OWTs. Since the measurements shown in Fig. 17a, b and c are along the

vertical centerline of the cross section and cover the 10cm near-bottom region

(less than 1/4 of the channel’s depth), w̄ should be positive for the smooth

bottom tests and negative for the rough bottom tests, which is corroborated

by our observations. For the smooth bottom tests, as a confirmation, the w̄

measured at one-quarter width from the sidewall is shown in Fig. 17d. The

measurements are generally zero or slightly positive in the near-bottom part

(z<40mm), and become negative at higher elevations, which agrees well with

the secondary flow pattern along the black bar in Fig. 18a. For the rough

bottom tests, since the ceramic-marble bottom tests have higher turbulence

intensity in the bottom boundary layer than the “sandpaper” bottom tests,

their secondary flows should be relatively stronger, which is confirmed by our

measurements. Therefore, the observed w̄ clearly indicates the existence of
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a secondary flow in the transverse plane of the test channel.

Since w̄ is mostly downward for rough bottom tests, it will transfer the

high momentum of the free-stream region into the bottom boundary layer, so

the boundary layer is consolidated. However, for smooth bottom tests, the

upward w̄ will transfer the low momentum fluid within the bottom boundary

layer into the free-stream region, and the boundary layer is stretched. This

can possibly explain why the smooth bottom boundary layers seem to be

“thicker” than the rough bottom boundary layers, especially for ζw, as shown

in Fig. 15. Meanwhile, this also implies that the observed rough bottom

boundary layers may be thinner than those of real coastal waves, so the

fitted power-law formulas may just work for periodic waves in OWTs.

5. Bottom shear stress

5.1. Log-profile fitting method

The momentum equation for oscillatory turbulent boundary layers in

OWTs is:
∂u

∂t
= −∂p/ρ

∂x
+
∂(τ/ρ)

∂z
(23)

where τ/ρ is simply called shear stress hereafter. Since the ∂u/∂t term is

negligibly small compared to other terms in the very near-bottom region,

the flow can be considered quasi-steady, i.e. at any instance, t, the near-

bottom flow should follow a logarithmic distribution controlled by τb(t)/ρ

and kb. Therefore, we can perform log-profile fitting to obtain u∗(t). The

instantaneous bottom shear stress is then given by:

τb(t)

ρ
= |u∗(t)|u∗(t) (24)
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Fig. 19 shows the double-averaged instantaneous velocity profiles and the

fitted logarithmic profiles for test SP400a ce. For clarity, only the region

z<50mm is shown for half of the wave period. To have sufficient but not too

many data points, the log-profile fittings are simply based on the bottom-

most five data points which satisfy the data selection rules for fitting the first-

harmonic amplitude profile. For most instantaneous velocity profiles, the

fitted logarithmic profiles reasonably pass through the selected data points,

and the fitted kb has a mean value of 19.3mm with a 6.3mm standard devi-

ation, which agrees well with the kb=kN=20mm obtained before. However,

the three velocity profiles, identified by bright red symbols, in the time win-

dow from ωt=68◦ to 90◦ give instantaneous kb that differ from kb=20mm

by a factor over 4. This time window corresponds to when the free-stream

velocity u∞(t) crosses zero. As u∞(t) decreases to zero, ∂p/∂x has the same

sign of u∞(t) and generally increases with ωt. Therefore, the oscillatory

flow experiences an increasingly adverse pressure gradient, which eventually

leads to separation of boundary layers (near-bottom velocities opposing the

free-stream velocity), e.g. at ωt=79◦. In such situations, the near-bottom

logarithmic layer vanishes. The total duration when the log-profile fitting is

not applicable is roughly about 20∼30% of T for all periodic wave tests in

this study. Thus, the log-profile fitting method still works during most of a

wave period.

Since kb is already obtained from fitting the first-harmonic amplitude

profile, u∗(t) can be determined through a modified log-profile fitting which

has a predetermined z0=kb/30. This will significantly smooth the obtained

time series of u∗(t), as shown in Fig. 20. At the instants when the very
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near-bottom logarithmic profile disappears, u∗(t) is close to zero, so it is still

acceptable to apply the modified log-profile fittings to the bottom-most five

points and use the fitted u∗(t), which is also close to zero, as a rough estimate

of the actual u∗(t).

5.2. Momentum integral method

The shear stress at any vertical elevation z can be estimated by integration

of Eq. (23):
τ(z, t)

ρ
=

∫ zδ

z

∂[u∞(t)− u(z′, t)]

∂t
dz′ (25)

where the free-stream level zδ should be outside the boundary layer. For

all tests, zδ is between 1.3 and 1.5 times the boundary layer thickness δw

obtained in Section 4.2, ensuring that τ(zδ, t)/ρ is zero. Eq. (25) can be

expressed in terms of Fourier components:

τ(z)(n)

ρ
=

∫ zδ

z

inω(U (n)
∞

− U(z′)(n))dz′ (26)

Thus, the n-th-harmonic shear stress τ(z)(n)/ρ can be obtained by integrating

the n-th-harmonic velocity deficit. The bottom shear stress is often evaluated

at z=z0 which is below the lowest level with valid measurements z=z1. Thus,

the integral for bottom shear stress is:

τ
(n)
b

ρ
=

∫ zδ

z1

inω(U (n)
∞

− U (n))dz +

∫ z1

z0

inω(U (n)
∞

− U (n))dz (27)

The second part is essentially an extrapolation of the first part, and it must be

calculated using extrapolated distributions of amplitude Un and phase ϕn of

nth-harmonic velocity from z0 to z1. For the first-harmonic velocity, the am-

plitude U1 is extrapolated by extending the logarithmic profile given by the
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log-profile fitting. For the phase of the first-harmonic velocity ϕ1, we simply

propose a depth-invariant extrapolation of the measured ϕ1 at z=z1. Since

other logical extrapolations, e.g. linear or quadratic extrapolation, makes

virtually no difference. Table 7 shows the amplitudes and phases of the

first-harmonic bottom shear stress given by the momentum integral method

for three representative tests over the ceramic-marble bottom. The ampli-

tude of the extrapolation term (the third column) can be up to 50% of the

numerical-integral term based on actual measurements (the second column),

and they do not have similar phases, i.e. roughly 76◦ versus 1∼10◦. Both

the “sandpaper” bottom and the smooth bottom yield the same comparison.

For any experimental methodology which contains such a large extrapolated

component, the obtained results are inherently questionable, unless the ex-

trapolation has very solid physics background. For smooth bottom tests, our

proposed extrapolation of velocity, although not perfect, is still an acceptable

representation of the actual velocity distribution. However, for rough bottom

tests, part of the extrapolation layer, called the roughness layer hereafter, is

occupied by solid roughness elements, which makes the concept of a “fluid

velocity” completely fictitious. Thus, any assumed distribution of velocity,

including ours, is questionable. For the same reasons, we will not discuss the

extrapolation for higher order harmonics.

5.3. Reynolds stress method

All tests in this study are highly turbulent, so the Reynolds stress cal-

culated using Eq. (5) is the dominant mechanism for transfer of momentum

across boundary layers, and can be considered the shear stress which con-

trols the Reynolds-averaged flow. Ideally, the obtained vertical profiles of
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Reynolds stress should be identical to those given by the momentum integral

method. Fig. 21 shows the comparisons based on the first-harmonic shear

stress of a typical sinusoidal wave, SP400a, over our three bottom configu-

rations. Clearly, the Reynolds stresses are generally smaller than the shear

stresses given by the momentum integral method. At about z=5mm, for

tests over the smooth and the “sandpaper” bottoms the Reynolds stresses

are roughly 50% of those obtained from the momentum integral method, but

for the test over the ceramic-marble bottom this ratio increases to about 75%,

so the discrepancy seems to decrease with bottom roughness. Moreover, the

discrepancy also decreases with elevation and the elevation zmatch where the

two methods become identical decreases with bottom roughness, i.e. zmatch

is 80mm for the smooth bottom test, but decreases to 38mm and 18mm for

the “sandpaper” and ceramic-marble bottoms, respectively.

These discrepancies are due to the PIV’s limited ability to measure tur-

bulent fluctuations. As introduced in Section 2.2, the PIV cross-correlation

analysis is based on interrogation grids with length and depth scales of

O(1mm). This algorithm essentially serves as a low-pass filter which re-

moves all turbulent eddies smaller than the size of the interrogation grids,

so the contribution from these small eddies to the total Reynolds stress is

missed. According to the mixing length theory, the characteristic scale of ed-

dies increases with elevation, so less eddies are missed in the upper part of the

boundary layer, which leads to better agreement between the two methods.

Since the characteristic scale of the turbulent eddies in close vicinity to the

bottom is proportional to the physical scale of bottom roughness elements

and the three tests shown in Fig. 21 have identical sizes of the interrogation
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grids, smoother bottom leads to smaller turbulent eddies and consequently

more severe underestimate of Reynolds stress. To further prove our argu-

ments, the Reynolds stresses of test SP400a sa given by two PIV resolutions

are shown in Fig. 22. The coarse resolution is about twice the fine resolution,

and affords a roughly 20% smaller Reynolds stress below z=40∼50mm. The

phase profiles, Fig. 21b, d and f, show good agreement between the two meth-

ods, except for the region close to the upper edge of the boundary layer where

the momentum integral is subject to experimental error, since U (1)-U
(1)
∞ be-

comes vanishingly small. If we consider the total Reynolds stress as the sum

of contributions from missed and captured eddies, this good agreement in

phase indicates that the two contributions are generally in phase, so missing

some small eddies only reduces the amplitude. This hypothesis is further

supported by the excellent agreement between the two phase profiles shown

in Fig. 22b. Most velocity measurement instruments, such as PIV, require

a finite sampling volume with scales of O(mm) to provide measurements, so

they are all subject to the effect of “missing” eddies. This is the likely reason

why almost all existing experimental studies have reported that the measured

Reynolds stress was smaller than that obtained from the momentum integral

method, e.g. van der A et al. (2011) and Hay et al. (2012b).

5.4. Momentum integral versus log-profile fitting

The comparison between the momentum integral method and the log-

profile fitting method is based on their determination of the first-harmonic

amplitude and phase of the bottom shear stress. The comparison for the

three bottom configurations are shown in Table 8. For tests over the smooth

bottom, the two methods give nearly identical estimates of the first-harmonic
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bottom shear stress, i.e. the average ratio of amplitudes is 100%±14% and

the average offset in phases is −3.2◦±4.6◦. This good agreement suggests

that both methods are valid for estimating bottom shear stress for smooth

oscillatory turbulent boundary layer flows. As an additional piece of evi-

dence, Jensen et al. (1989) in their smooth bottom tests directly measured

the bottom shear stress using hot-film probes and found that the direct mea-

surements were in good agreement with the bottom shear stresses given by

log-profile fittings. However, this good agreement disappears when the bot-

tom becomes rough, with the first-harmonic bottom shear stress afforded by

the momentum integral method becoming systematically smaller than that

of the log-profile fitting method as the bottom roughness increases. The av-

erage ratio of amplitudes drops to 72%±9% for tests over the “sandpaper”

bottom, and is further reduced to 58%±6% for tests over the ceramic-marble

bottom. Since the log-profile fitting method is based on a quasi-steady as-

sumption which is independent of whether the bottom is smooth or rough, it

is legitimate to extend its confirmed validity for smooth bottom scenarios to

rough bottom scenarios. Therefore, the observed discrepancy suggests that

the momentum integral method is questionable.

As shown in Section 4.4, we observed a mean vertical velocity due to

secondary flows in the transverse plane, which leads to an additional term in

the governing equation:

∂u

∂t
=
∂u∞
∂t

+
∂τ/ρ

∂z
− w̄

∂u

∂z
(28)

The first harmonic of this equation can be integrated from z to zδ to yield:

MI(z)(1) = τ(z)(1)/ρ−
∫ zδ

z

w̄
∂(U

(1)
∞ − U(z)(1))

∂z′
dz′ (29)
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where MI(z)(1) is the complex first harmonic of the momentum integral. In

this form it is readily recognized that the momentum integral is the actual

shear stress τ(z) minus the influence of the non-zero mean vertical velocity

component which represents the “error” of the momentum integral method.

We simply integrate this error term by parts to obtain:

−
∫ zδ

z

w̄
∂(U

(1)
∞ − U (1))

∂z′
dz′ =

w̄(U (1)
∞

− U (1)) +

∫ zδ

z

∂w̄

∂z
(U (1)

∞
− U (1))dz′

(30)

The second term on the right-hand side is scaled by the vertical gradient

of the mean vertical velocity. A rough estimate based on Fig. 17 suggests

that it is less than 0.1s−1, which is considered much smaller than the angular

frequency ω=0.5 or 1s−1 in this study. Thus, this term is negligibly small

compared to MI(z)(1), and consequently only the first term could result in

a sizeable error. In the near-bottom region, the phases of U (1) in Eq. (29),

of the order 20◦, has little influence on their amplitudes, which gives:

|MI(1)| ≈ |τ (1)/ρ|+ w̄(z)(|U (1)
∞

| − |U (1)|) (31)

Apparently, the momentum integral will underestimate or overestimate the

shear stress if w̄ is negative or positive. As the velocity deficits increase

towards the bottom, the error term also grows and the momentum integral

becomes increasingly incorrect. At z=z0, we have:

|I(1)b | = |τ (1)b /ρ|+ w̄b|U (1)
∞

| (32)

For rough bottom tests, z=z0 is a fictitious bottom level which does not

necessarily require a zero w̄, e.g. for the ceramic-marble bottom there is

40



still 9mm space from z=z0 to the solid surface of aluminum plates. Thus,

a non-zero w̄ can exist inside the roughness layer. As shown in Fig. 17b, w̄

even increases towards the bottom below z=20mm, which is also observed

for the gravel-bottom tests of van der A et al. (2011). The error term is

essentially a net downward transfer of momentum which drives (together

with the pressure gradient) the flow around individual roughness elements as

well as the “porous flow” below z=z0 to produce a form drag. The momentum

integral method fails to capture this, and consequently underestimates the

bottom shear stress. If we use the bottom-most w̄ for w̄b, the obtained error

terms are −24cm2/s2 and −96cm2/s2 for tests SP400a sa and SP400a ce,

respectively, which correspond to 16% and 30% of the τ
(1)
b given by the log-

profile fitting method. These are comparable to the observed discrepancies,

i.e. 28% and 42%. For smooth bottom tests, even though the observed w̄ may

not approach zero towards the bottom due to some unknown experimental

error, there is no question that w̄b must be zero at z=0≈z0. Thus, the error

term vanishes and the momentum integral is still able to give the correct

bottom shear stress for smooth bottom tests.

In conclusion, among the methods to infer bottom shear stress from ve-

locity measurements, only the log-profile fitting method can be considered

to yield the correct estimate.

5.5. Friction factors and phase leads

The maximum bottom shear stress τbm/ρ and its phase lead relative to the

maximum free-stream velocity ϕτbm are very important parameters for prac-

tical applications. Here we only consider the τbm/ρ and ϕτbm for sinusoidal

wave tests, because the nonlinear wave tests in OWTs may have a sizeable

41



mean bottom shear stress due to the facility-produced return current which

affects τbm/ρ, as discussed by Yuan (2013). It is customary to express τbm/ρ

in terms of a wave friction factor fw introduced by Jonsson (1966):

fw = 2
τbm/ρ

U2
∞,1

(33)

For sinusoidal oscillatory turbulent boundary layers, the bottom shear stress

should only contain odd Fourier components for which the amplitudes decay

quickly with orders. Therefore, to remove experimental noise, τbm is deter-

mined from a smoothed τb(t) by only retaining its first and third harmonics,

i.e. the thick solid line in Fig. 23.

In Fig. 24, the results of fw and ϕτbm are compared with some previous ex-

perimental studies which have reliable measurements of bottom shear stress.

For the smooth bottom tests of Jensen et al. (1989), the effective bottom

roughness kb is evaluated using the formula, kb=1.32 · 3.3ν/u∗m, as discussed
in Section 3.2.1. The measurements of fw have very good consistency, while

the measurements of ϕτbm show relatively larger scatter. This is probably

because the phase is more sensitive to experimental noise. Nevertheless, it

is clear that both parameters decrease with increasing Abm/kb. For smooth

bottom tests, our measurements of fw agree excellently with the measure-

ments of Jensen et al. (1989), but the values of ϕτbm from the present study

are higher by roughly 5◦. The reason for this is unclear, but the discrepancy

is not vital. Recently, Humbyrd (2012) proposed an improved version of the

Grant and Madsen (1979) model without empirically determined parameters.

For 10<Abm/kb<10
5, her model gives:

fw = exp(5.70(
Abm

kb
)−0.101 − 7.46) (34)
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ϕτbm[rad] = 0.649(
Abm

kb
)−0.160 + 0.118 (35)

As shown in Fig. 24, the measured fw tightly follow the prediction, and the

measured ϕτbm are evenly distributed around the predicted curve, except for

the three points given by Jensen et al. (1989). Therefore, the model can

predict the maximum bottom shear stress with excellent accuracy.

To reveal the intra-period variation of bottom shear stress for linear (si-

nusoidal) or nonlinear (Stokes and forward-leaning) waves, τb(t)/ρ is fourier

analyzed to give the first three harmonics of bottom shear stress. The mean

bottom shear stress is not shown here, because it will be intensively dis-

cussed in a forthcoming journal publication focusing on experimental re-

sults obtained in our OWT for combined wave-current boundary layer flows.

Gonzalez-Rodriguez and Madsen (2011) developed an analytical model based

on a time-varying turbulent eddy viscosity. For a free-stream velocity given

by the sum of the first and second harmonics, e.g. Eq. (6), they analytically

obtained the first three harmonics of bottom shear stress which are expressed

in terms of friction factors and phase leads:

2τ
(1)
b /ρ

U2
∞,1

= f1 exp(iϕτb,1) (36)

2τ
(2)
b /ρ

U∞,1U∞,2

= f2 exp[i(ϕτb,2 + ϕ∞,2)] (37)

2τ
(3)
b /ρ

U2
∞,1

= f3 exp(iϕτb,3) (38)

The model prediction suggests that the effect of the U
(2)
∞ on the first and

third harmonics of bottom shear stress is negligible for realistic values of

U
(2)
∞ (<U

(1)
∞ /4). Therefore, (f1, f3) and (ϕτb,1, ϕτb,3) can be considered single-

valued functions of Abm,1/kb, while f2 and ϕτb,2 are functions of Abm,1/kb and
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ϕ∞,2. These dependencies are further approximated by the explicit formulas

(not shown here for simplicity) given by Gonzalez-Rodriguez and Madsen

(2010) (hereafter GRM10). For easy comparison, our measurements are also

expressed in term of these friction factors and phase leads.

The first-harmonic bottom shear stress, τ
(1)
b , is the dominant component

of bottom shear stress. The measurements of f1, Fig. 25a, exhibit little

scatter and nicely form a decreasing trend. No visually detectable differ-

ence among the three wave conditions is observed. Similar to ϕτbm, the

measured ϕτb,1, Fig. 25b, decreases as Abm,1/kb increases. The ϕτb,1 of the

forward-leaning waves appears slightly smaller than those of the other two

wave conditions. This is possibly because ϕτb,1 is relatively more sensitive to

the effect of U
(2)
∞ than f1. Nevertheless, the difference (less than 5◦) is small

enough to be considered negligible. The second-harmonic bottom shear stress

,τ
(2)
b , is present only for nonlinear waves and partly depends on ϕ∞,2, so we

obtain two curves in Fig. 25c and d. The measurements suggest that the

f2 of Stokes waves is slightly smaller than those of forward-leaning waves.

For ϕτb,2, the data points show a systematic difference between the two wave

conditions, i.e. the ϕτb,2 of forward-leaning waves are larger than those of

Stokes waves by roughly 5∼10◦. The third-harmonic bottom shear stress τ
(3)
b

is much smaller than τ
(1)
b and τ

(2)
b in amplitude, so larger scatter is observed

for both f3 and ϕτb,3, as shown in Fig. 25e and f. Nevertheless, the measure-

ments suggest that both f3 and ϕτb,3 decrease with increasing Abm,1/kb. It

should be noted that the ratio f3/f1 is in general between 10∼16%. Thus,

although U (3) is very small, τ
(3)
b is a non-negligible part of the total bottom

shear stress. This is because τ
(3)
b is mainly produced by the interaction of the
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second-harmonic turbulent eddy viscosity and the first-harmonic velocity, as

suggested by Trowbridge and Madsen (1984a).

The measured friction factors and phase leads are reasonably predicted

by the GRM10 model. For τ
(1)
b , the model sightly underestimates f1 and

overestimates ϕτb,1 in the low Abm,1/kb regime, but the model’s performance

improves with increasing Abm,1/kb. Given the smallness of τ
(3)
b and the large

scatter, the predictions of f3 and ϕτb,3 are sufficiently good. For τ
(2)
b , the

GRM10 model reasonably predicts ϕτb,2 for each wave condition, and cap-

tures the observed difference between Stokes and forward-leaning waves quite

well. However, it underestimates f2 by up to 20∼30% for low values of

Abm,1/kb. This may be a significant problem, because the second-harmonic

bottom shear stress plays a major role in producing a net sediment trans-

port in the wave direction. Therefore, it would be desirable to improve the

predictive skills of the model developed by Gonzalez-Rodriguez and Madsen

(2011) for the second-harmonic shear stress characteristics.

6. Conclusion

A high-quality experimental study including a large number of tests which

correspond to full-scale coastal boundary layer flows is performed using a

state-of-the-art oscillating water tunnel for flow generations and a Particle

Image Velocimetry system for velocity measurements. The tests include three

wave shapes: Sinusoidal, Stokes and Forward-leaning waves, over three dif-

ferent bottom roughness configurations: smooth, “sandpaper” and ceramic-

marble bottoms.

Experimental results show that the logarithmic profile can accurately
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represent the near-bottom first-harmonic amplitude of sinusoidal oscillatory

flows, and the log-profile fitting give highly accurate determinations of bot-

tom roughness and theoretical bottom location z=0. For smooth bottom

tests, it is demonstrated that the effective bottom roughness formula for

steady smooth turbulent flows suggested by Nikuradse (1932), kb = 3.3ν/u∗,

is also applicable for smooth turbulent oscillatory flows if the characteristic

shear velocity is based on a period-averaged value. The definition of this

shear velocity requires future experimental investigations. For the “sandpa-

per” bottom, tests over a wide range of Re∗, (from 33 to 611) show that kb

varies with Re∗ in a pattern similar to but not in quantitative agreement

with Nikuradse (1933). Thus, the curve C(Re∗) from Nikuradse’s study,

which is often used to determine kb, is not universally applicable. For the

ceramic-marble bottom, all tests are in the fully rough turbulent regime. The

obtained z=0 is 0.32D below the crests of the uniform ceramic marbles, and

the fitted kb=kN is consistently larger than D, i.e. kN=1.6D. This is because

of flow alignment relative to the regular pattern of marble placement.

The Reynolds-averaged horizontal velocity is Fourier analyzed to reveal

the detailed vertical structures of turbulent oscillatory boundary layers. The

first harmonics of both sinusoidal and nonlinear waves, as well as the second

harmonic of nonlinear waves, exhibit similar patterns of vertical variation,

i.e. the amplitudes have a small overshoot and the phases generally increase

toward the bottom. For nonlinear waves, a weak boundary layer streaming

is observed. It is in the negative direction (against the wave direction) in the

very near-bottom region, and becomes positive further away from the bot-

tom due to a superimposed mean pressure gradient. This, as well as a small
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but meaningful third harmonic embedded in both sinusoidal and nonlinear

waves can be only explained by the interaction of a time-varying turbulent

eddy viscosity and the time-varying near-bottom velocity, as suggested by

Trowbridge and Madsen (1984a,b). Two dimensionless characteristic bound-

ary layer thicknesses, the elevation ζw of 1% complex first-harmonic velocity

deficit and the elevation of the maximum first-harmonic amplitude overshoot

ζm, are measured. For rough bottom tests, both of them have power-law de-

pendencies on the relative roughness Abm/kN . The ratio ζw/ζm is consistently

about 2.4 over the range 20<Abm/kN<1000. The smooth oscillatory turbu-

lent boundary layers are found to be 40∼65% thicker than the predictions

given by the power-law fits based on rough turbulent wave boundary layers.

Observations show that the period-averaged vertical velocity measured in the

10cm near-bottom region along the vertical centerline of the cross section is

generally positive for smooth bottom tests, but generally negative for the

rough bottom tests, due to different patterns of Prandtl’s secondary flows of

the second kind.

Three methods, log-profile fitting, momentum integral and Reynolds stress,

to infer the bottom shear stress from velocity measurements are discussed.

The comparison between the momentum integral method and the Reynolds

stress method suggests that the Reynolds stress method yields smaller esti-

mates of the bottom shear stress than the momentum integral method. This

is because turbulent eddies with physical scales smaller than the PIV’s in-

terrogation grids are not captured in the PIV cross-correlation analysis, and

consequently their contributions to the Reynolds stress are missed. The com-

parison between the momentum integral method and the log-profile fitting
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method suggests that the momentum integral method gives a significantly

smaller estimate of bottom shear stress for rough bottom tests. This is due

to the non-zero mean vertical velocity associated with the secondary flow in

the transverse plane, which produces a net transfer of momentum at the con-

ceptual bottom level where the bottom shear stress is estimated. In addition,

the momentum integral method requires a sizeable extrapolation based on a

fictitious velocity distribution within the roughness layer, which makes the

method inherently questionable. Therefore, among the three possible meth-

ods, only the log-profile fitting method is considered to yield the correct

estimate of the bottom shear stress.

For sinusoidal wave boundary layers, the measurements suggest that both

the maximum bottom shear stress (in terms of the wave friction factor) and

the associated phase lead decrease with the relative roughness. These varia-

tions are accurately predicted by the Humbyrd (2012) model which represents

the latest version of Grant-Madsen-type models. A sizeable third-harmonic

bottom shear stress which is up to 15% of the dominant first-harmonic bot-

tom shear stress is observed. Both of these two significant harmonics are

well predicted by the GRM10 model which assumes a time-varying turbulent

eddy viscosity. For nonlinear waves, the measurements suggest that first and

third-harmonic bottom shear stresses receive little influence from the wave

nonlinearities. A sizeable second-harmonic bottom shear stress which weakly

depends on the wave shape is observed. The analytical model developed by

Gonzalez-Rodriguez and Madsen (2011) which is represented by approximate

explicit formulas given by Gonzalez-Rodriguez and Madsen (2010) reason-

ably predicts its phase but underestimates its amplitude by up to 20% for
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low values of Abm,1/kb, implying that this model would benefit from further

improvements.
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Figure captions

Figure 1. 3D Sketch of the Wave-Current-Sediment (WCS) facility.

Figure 2. Rough Bottom: (a) “sandpaper” bottom (top-view), (b) ceramic-

marble bottom (top-view), (c) “sandpaper” bottom (side-view), (d) ceramic-

marble bottom (side-view).

Figure 3: Free-steam velocities of nonlinear oscillatory flows (solid line:

Stokes wave, dashed line: forward-leaning wave).

Figure 4: A small part of the PIV image showing the bottoms (yellow

dashed lines: y=0 of the temporary vertical coordinate y): (a) smooth bot-

tom, (b) ceramic-marble bottom, (c) “sandpaper” bottom (black curve: the

bottom profile given by normal-distribution fittings).

Figure 5: Normal-distribution fitting of the 50-pixel-averaged smooth

bottom brightness profile (solid line: fitted curve, crosses: selected data

points, dots: measured brightness profile).

Figure 6: Bottom profile of the smooth bottom determined from normal-

distribution fitting: (a) the obtained bottom profile (dots) with the 95%-

confidence interval (error bars) and a linear fit (solid line), (b) the tempo-

ral variation of the bottom location Z0 at X=1025 during wave generation,

SP400a (full circles: measurements, solid line: a fitted sinusoidal variation).

Figure 7: The coefficient of determination for log-profile fitting 1-R2 as

a function of zero offset ∆: (a) ceramic-marble bottom, (b) “sandpaper”

bottom.

Figure 8: Dimensionless measured velocity profiles and fitted logarithmic

profiles over the smooth bottom (data points between the two “×” markers

are used for log-profile fittings): (a) pure current test C40 sm, (b) sinusoidal
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wave test SP400a sm.

Figure 9: Dependency of C on Re∗ for the “sandpaper” bottom (error

bars indicate 95%-confidence interval).

Figure 10: Measured velocity profiles and fitted logarithmic profiles for

tests over rough bottoms (data points between the two “×” markers are used

for log-profile fittings): (a) C40 sa (current over the “sandpaper” bottom),

(b) SP400a sa (sinusoidal wave over the “sandpaper” bottom), (c) C40 ce

(current over the marble bottom), (d) SP400a ce (sinusoidal wave over the

marble bottom).

Figure 11: Conceptual sketch of near-bottom flow interaction with rough-

ness elements: (a) roughness elements of the “sandpaper” bottom, (b) rough-

ness elements of densely packed sand grains.

Figure 12: Directional dependency of bottom roughness for the ceramic-

marble bottom.

Figure 13: First three harmonics of the measured Reynolds-averaged ve-

locity of a sinusoidal wave test SP400a ce (gray zone indicates standard de-

viation from spatial averaging): (a) first-harmonic velocity amplitude, (b)

first-harmonic velocity phase, (c) second-harmonic velocity amplitude, (d)

second-harmonic velocity phase, (e) third-harmonic velocity amplitude, (f)

third-harmonic velocity phase.

Figure 14: First two harmonics of the measured Reynolds-averaged ve-

locity: a forward-leaning wave FL320a ce (solid lines) and a Stokes wave

ST400a ce (dashed lines): (a) dimensionless first-harmonic velocity ampli-

tude, (b) first-harmonic velocity phase, (c) dimensionless second-harmonic

velocity amplitude, (d) second-harmonic velocity phase lead.
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Figure 15: Dimensionless boundary layer thickness as a function of the

inverse relative roughness: (a) the elevation of the maximum first-harmonic

amplitude overshoot ζm, (b) the elevation ζw of 1% complex first-harmonic

velocity deficit.

Figure 16: Boundary layer streaming: (a) sinusoidal wave SP400a, (b)

forward leaning wave FL320a, (c) Stokes wave ST400a.

Figure 17: Period-averaged vertical velocity profiles of three representa-

tive tests (SP400a, ST400a and FL320a) over three bottom conditions: (a)

“sandpaper” bottom, (b) ceramic-marble bottom, (c) smooth bottom, (d)

smooth bottom with measurement at one-quarter width from the sidewall

((a) to (c) are obtained along the lateral centerline of the test channel).

Figure 18: Conceptual drawing of secondary flows in a straight channel

with squared cross-section: (a) smooth bottom, (b) rough bottom.

Figure 19: Instantaneous double-averaged velocity profiles of test SP400a ce

and the associated log-profile fittings over half of the wave period.

Figure 20: Time series of shear velocity obtained from log-profile fittings

of test SP400a ce (circles: modified log-profile fitting with a known bottom

roughness scale z0, crosses: log-profile fittings without a fixed z0).

Figure 21: Comparison of first-harmonic shear stresses given by momen-

tum integral (solid lines) and Reynolds stress (dots) for sinusoidal wave test

SP400a over the three bottom configurations: (a) and (b) smooth bottom,

(c) and (d) “sandpaper” bottom, (e) and (f) ceramic-marble bottom.

Figure 22: Comparison of first-harmonic Reynolds stress for test SP400a sa

sampled with two PIV resolution (solid lines: fine resolution: dots: coarse

resolution): (a) amplitude, (b) phase.
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Figure 23: Bottom shear stress of SP400a ce (sinusoidal test over the

ceramic-marble bottom): (thin solid line: the first harmonic, thin dashed

line: the third harmonic, dots: measurements, thick solid line: smoothed

time series given by the sum of the first and third harmonics).

Figure 24: Maximum bottom shear stress of sinusoidal wave tests: (a)

Wave friction factor, (b) phase lead of the maximum bottom shear stress.

Figure 25: Amplitudes, in terms of the friction factors defined by Eqs.

(36) to (38), and phases of the first three harmonics of bottom shear stress

for sinusoidal, Stokes, and forward-leaning waves: (a) first-harmonic friction

factor, (b) first-harmonic phase lead, (c) second-harmonic friction factor, (d)

second-harmonic phase lead, (e) third-harmonic friction factor, (f) second-

harmonic phase lead.
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Table 1: Target flow conditions (a1: first-harmonic displacement amplitude of the piston,

U∞,1: approximated amplitude of the free-stream first-harmonic velocity, T : wave period,

Re = U∞,1A∞,1/ν: Reynolds number based on the amplitude of the first-harmonic free-

stream velocity and ν = 0.8 · 10−6m2/s at a room temperature of 25◦C).

Test ID Wave shape
a1

[mm]

U∞,1

[cm/s]

T

[s]

Re

(106)

SP400a Sinusoidal 400 157.9 6.25 3.1

SP400b Sinusoidal 400 79.0 12.5 1.6

SP250 Sinusoidal 250 98.7 6.25 1.2

SP200 Sinusoidal 200 39.5 12.5 0.4

ST400a Stokes 400 157.9 6.25 3.1

ST400b Stokes 400 79.0 12.5 1.6

ST200 Stokes 200 79.0 6.25 0.4

FL320a Forward-leaning 320 126.3 6.25 2.1

FL320b Forward-leaning 320 63.2 12.5 1.1

FL160 Forward-leaning 160 63.2 6.25 0.5
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Table 2: Assessment of flow generation based on a Stokes wave test (ST400a) over the

smooth bottom (U∞,1, U∞,2 and U∞,3: amplitudes of the first three harmonics of free-

stream velocity, ϕ∞,2: phase of the second-harmonic free-stream velocity).

U∞,1

[cm/s]

U∞,2

[cm/s]

U∞,3

[cm/s]

ϕ∞,2

[◦]

Utarget 157.91 39.48 0 0

Upiston 157.52 39.50 2.41 -5.42

UPIV,1 157.06 39.84 2.44 -5.56

UPIV,2 157.88 40.39 2.76 -4.92
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Table 3: Optimal zero bottom offset ∆ (z = y+∆) and corresponding minimum coefficient

of determination (1-R2) obtained from log-profile fitting

min(1-R2) ∆ [mm]

Ceramic-marble bottom

SP400a ce 8.8 · 10−5 3.6

SP400b ce 2.4 · 10−5 4.7

SP250 ce 7.0 · 10−5 3.8

SP200 ce 1.4 · 10−4 3.7

C40 ce 4.3 · 10−5 3.8

C13 ce 4.0 · 10−5 4.3

“sandpaper” bottom

SP400a sa 1.4 · 10−5 0.45

SP400b sa 7.4 · 10−5 0.63

SP250 sa 6.0 · 10−5 0.71

C40 sa 3.1 · 10−5 0.66

C45 sa 2.8 · 10−5 0.56
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Table 4: Results of log-profile fittings for tests over the smooth bottom (1-R2: coefficient

of determination, u∗: fitted shear velocity, ±∆u∗/u∗: relative 95% confidence interval of

u∗, kb: fitted bottom roughness, r∆k: 95% confidence factor of kb, kb,p: bottom roughness

predicted using fitted u∗).

Test ID 1-R2 u∗[cm/s] ±∆u∗/u∗ kb [mm] r∆k kb,p = 3.3ν/u∗ [mm] kb,p/ kb

Currents

C13 sm 4.0 · 10−4 0.67 1.03% 0.44 1.04 0.39 0.89

C30 sm 1.9 · 10−4 1.35 0.61% 0.21 1.03 0.19 0.93

C40 sm 1.1 · 10−4 1.74 0.64% 0.14 1.03 0.15 1.05

C45 sm 4.3 · 10−4 2.14 1.19% 0.13 1.06 0.12 0.97

Sinusoidal waves

SP250 sm 4.8 · 10−5 4.91 2.11% 0.062 1.13 0.054 0.87

SP400b sm 1.6 · 10−4 3.85 1.73% 0.086 1.10 0.069 0.80

SP400a sm 8.4 · 10−4 7.28 5.34% 0.045 1.37 0.036 0.81
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Table 5: Results of log-profile fittings for tests over the “sandpaper” bottom (1-R2: coeffi-

cient of determination, u∗: fitted shear velocity, ±∆u∗/u∗: relative 95% confidence inter-

val of u∗, kb: fitted bottom roughness, r∆k: 95% confidence factor of kb, Re∗ = u∗kN/ν:

roughness Reynolds number with kN=3.7mm).

Test ID 1-R2
u∗

[cm/s]

∆u∗/u∗

kb

[mm]

r∆k Re∗

Currents

C13 sa 4.4 · 10−4 0.71 1.59% 0.73 1.14 33

C26 sa 3.8 · 10−5 1.35 0.44% 0.88 1.04 62

C40 sa 7.0 · 10−5 2.18 0.43% 1.08 1.04 100

C45 sa 4.5 · 10−5 2.49 0.34% 1.17 1.03 114

Sinusoidal waves

SP200 sa 1.0 · 10−3 3.27 5.89% 1.88 1.55 151

SP400b sa 7.6 · 10−5 6.34 0.71% 3.15 1.04 293

SP250 sa 1.0 · 10−4 8.93 1.01% 3.77 1.06 411

SP400a sa 6.0 · 10−5 13.25 0.63% 3.60 1.04 611
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Table 6: Results of log-profile fittings for tests over the ceramic-marble bottom (1-R2:

coefficient of determination, u∗: fitted shear velocity, ±∆u∗/u∗: relative 95% confidence

interval of u∗, kb: fitted bottom roughness, r∆k: 95% confidence factor of kb, Re∗ =

u∗kN/ν: roughness Reynolds number with kN=20mm).

Test ID 1-R2
u∗

[cm/s]

∆u∗/u∗

kb

[mm]

r∆k Re∗

Currents

C13 ce 6.9 · 10−5 1.15 0.42% 15.7 1.02 287

C40 ce 6.6 · 10−5 3.55 0.49% 19.18 1.02 887

Sinusoidal waves

SP200 ce 1.4 · 10−4 5.38 2.21% 22.03 1.12 1346

SP250 ce 7.5 · 10−5 13.19 0.86% 20.77 1.05 3298

SP400b ce 9.5 · 10−5 9.58 0.79% 22.95 1.04 2394

SP400a ce 1.2 · 10−5 17.59 0.88% 16.76 1.05 4398
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Table 7: First-harmonic bottom shear stress estimated using the momentum integral

method (Integral: numerical integral based on actual measurements, Extrap.: extrapo-

lation term, Total: first-harmonic bottom shear stress given by adding the extrapolation

term to the numerical integral)

Amplitude [cm2/s2] Phase [◦]

Integral Extrap. Total Integral Extrap. Total

SP400a ce 161.3 53.5 193.2 12.5 76.6 28.7

SP250 ce 66.0 32.6 80.8 1.0 76.2 24.0

SP200 ce 10.0 5.4 12.6 2.7 76 26.7
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Table 8: Comparison of first-harmonic bottom shear stresses afforded by the momentum

integral method and the log-profile fitting method (MI: the momentum integral method,

L: the log-profile fitting method).

Amplitude [cm2/s2] Phase [◦]

MI L MI/L MI L MI-L

Smooth bottom

SP250 sm 19.3 20.3 94.9% 16.1 12.9 3.3

SP400a sm 49.0 44.4 110.3% 12.6 12.6 0.0

FL320b sm 8.3 8.8 93.9% 8.5 12.8 -4.3

FL320a sm 30.3 35.4 85.6% 6.9 11.8 -4.9

FL160 sm 10.5 8.2 128.3% 8.0 11.0 -3.0

ST400a sm 43.7 47.7 91.5% 6.3 12.4 -6.1

ST200 sm 12.5 13.3 94.1% 13.4 12.7 0.7

ST400b sm 12.5 12.1 103.6% 2.5 13.8 -11.4

Average 100±14% -3.2±4.6◦

“Sandpaper” bottom

SP200 sa 7.1 9.1 78.0% 15.9 19.8 -3.9

SP250 sa 41.9 66.6 62.9% 20.7 19.6 1.1

SP400b sa 23.1 33.5 69.0% 18.4 19.3 -0.9

SP400a sa 101.2 145.9 69.3% 19.8 18.1 1.7

FL320b sa 14.9 20.9 71.6% 23.4 18.9 4.5

FL320a sa 61.2 103.1 59.4% 22.1 18.4 3.7

FL160 sa 24.9 29.7 83.7% 19.9 19.8 0.1

ST400b sa 27.2 30.7 88.7% 18.1 20.0 -1.9

ST400a sa 99.5 147.3 67.5% 22.5 18.2 4.2

ST200 sa 29.5 44.4 66.5% 22.4 21.2 1.2

Average 72±9% 1.0±2.7◦

Ceramic-marble bottom

SP200 ce 12.6 22.2 57.0% 26.7 24.5 2.2

SP250 ce 80.8 141.1 57.3% 24 22.6 1.4

SP400a ce 193.2 303.3 63.7% 28.7 23.0 5.7

FL320a ce 120.8 218.1 55.4% 26.0 19.5 6.5

FL160 ce 38.5 72.7 53.0% 26.4 20.0 6.4

ST400a ce 201.3 299.9 67.1% 26.5 23.1 3.4

ST200 ce 52.7 102.7 51.3% 26.5 22.7 3.8

Average 58±6% 4.2±2.0◦
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Figure 6:
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Figure 7:
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Figure 13:
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Figure 14:
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Figure 15:
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Figure 17:
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Figure 18:
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Figure 19:
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Figure 20:
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Figure 21:
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Figure 22:
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Figure 23:
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Figure 24:
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Figure 25:
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